

 [image: Fork me on GitHub]

 Getting Started

Getting Started

It’s easy to get started with Enaml. If you are comfortable programming in
Python, you should find yourself quickly up to speed. The sections below
provide the information you need to start writing simple Enaml applications.
When you are comfortable with the topics here, have a look at the
Developer Guides for in-depth articles about developing with the framework.

Introduction

The introduction to Enaml explains the motivations behind the project
and what it seeks to achieve in the context of the larger Python
ecosystem. It presents the challenges inherent to UI development and
how the declarative programming model is used to address them.

Installation

The installation instructions present the steps needed to install
Enaml and its dependencies.

Anatomy of Enaml

The building blocks of an Enaml application are presented in the
form of a runnable example. The example shows how the various
syntactic constructs and framework components combine to create a
simple user interface application.

Enaml syntax and Data Models

Enaml defines a superset of Python that allows to define the UI in a
declarative way. One of the great features of Enaml is its ability to
automatically bind to data models through a rich set of operators. This
section describes the Enaml specific part of the syntax and how those
operators are used to connect user defined data models to Enaml views
and how they automatically keep the views up-to-date when the data in
the models change at runtime.

Constraints Layout

The layout systems of typical user interface frameworks can quickly
become tedious for all but the simplest of cases. Enaml sheds the
status quo and provides a flexible layout system which uses symbolic
constraints. This section covers the basics of constraints layout.

 Introduction

Introduction

This article is geared towards introducing a brand new user to Enaml. The
article sections cover the background, motivations, and programming paradigm
for the framework.

See also

	For an intro to the Enaml language structure, see the Anatomy of Enaml.

	For advanced articles on the Enaml language and framework,
see the Developer Guides.

What is Enaml?

Fundamentally:

Enaml is a declarative extension to the Python language grammar which
enables a developer to concisely define a hierarchical tree of objects
which automatically react to changes in a data model.

Practically:

Enaml is one of the easiest and most powerful ways to build
professional-quality user interfaces with Python.

Traditional UIs

Traditional user interface frameworks are typically implemented in a low level
language like C or C++. The frameworks utilize the libraries
and services provided by the underlying operating system in order to draw
pixels on the screen. These low-level drawing operations are abstracted from
the developer with high-level easy-to-use APIs. Some UI frameworks can be used
from Python with the help of wrappers which expose the high level toolkit APIs
to the Python runtime. The most common of these frameworks and their Python
wrappers include:

	Qt [https://qt-project.org] and PyQt [http://www.riverbankcomputing.com/software/pyqt/intro] or PySide [http://qt-project.org/wiki/PySide].

	GTK [http://www.gtk.org] and PyGTK [http://www.pygtk.org].

	wxWidgets [http://www.wxwidgets.org] and wxPython [http://www.wxpython.org].

	Tk [http://www.tcl.tk] and TkInter [https://wiki.python.org/moin/TkInter].

All of these frameworks share a common theme: A user interface is constructed
as a tree of graphical objects with some associated state.

Consider a hypothetical abstract object hierarchy, and what it might look like
if converted into a typical UI window:

[image: ../_images/abs_hierarchy.png]
[image: ../_images/win_hierarchy.png]

In order to create such a window, most frameworks require the developer to
write imperative code to set up the window’s object hierarchy. This leads to
code which looks similar to the following Python snippet:

window = Window()

menu = Menu(window)
item_1 = MenuItem(menu, "Item 1")
item_2 = MenuItem(menu, "Item 2")
item_3 = MenuItem(menu, "Item 3")

window.setMenu(menu)

label_1 = Label(window, "Label 1")
field_1 = Field(window)
label_2 = Label(window, "Label 2")
field_2 = Field(window)

form = FormLayout()
form.addRow(label_1, field_1)
form.addRow(label_2, field_2)

button = Button(window, "Button")

vbox = VBoxLayout()
vbox.addLayout(form)
vbox.addWidget(button)

window.setLayout(vbox)

The problem with code like this is that its structure does not map well to
the objects which it is producing. The code is tedious to read, write, and
understand; which makes it error-prone and difficult to maintain.

Imperative programming constructs are simply not well suited for defining
nested object hierarchies.

Programming against these frameworks is a fairly low level task and procedural
task. A developer is responsible for:

	procedurally building the object hierarchy

	tracking the data model for changes

	manually updating the UI to reflect data model changes

Note

There are design patterns (such as MVC [http://en.wikipedia.org/wiki/Model-view-controller]) which exist to make this process
more manageable, but they require strict developer discipline and do little
to reduce the tedium of the typical UI development process.

Declarative UIs

Relatively recently, there has been a shift in the UI development paradigm
which places an emphasis on the declarative specification of the object
hierarchy. The developer provides a declarative representation of the UI and
defines how the visual elements of the UI should bind to data in data models;
the framework then takes responsibility for updating the UI when the data in
the data models change, and vice versa.

This paradigm solves the primary problems with the imperative model:

	The structure of the code typically mimics the structure of the UI.

	The developer is freed from the tedium of managing state changes between
models and views.

Microsoft’s WPF [http://msdn.microsoft.com/en-us/library/aa970268.aspx] and Qt’s QML [http://qt-project.org/doc/qt-5.0/qtquick/qtquick-index.html] are two great examples of production
implementations of this programming model. Though these two frameworks are
similar in approach, they expose the declarative interface to the developer
using different Domain Specific Languages [http://en.wikipedia.org/wiki/Domain-specific_language] (DSL):

	Microsofts’s WPF

	Qt’s QML

	XML-based declarative DSL

	Javascript-based declarative DSL

	Data models written in .Net

	Data models written in C++ or JS

	UI binds to model properties

	UI binds to signals and properties

	Markup is translated to .Net

	Markup is interpreted by a VM

While both of these frameworks are popular and robust, neither are very
friendly for developing in a Python-centric ecosystem. The lack of a robust
declarative UI framework for Python is the motivating force behind Enaml.

Enaml brings the declarative UI paradigm to Python in a seamlessly integrated
fashion. The grammar of the Enaml language is a strict superset of Python. This
means that any valid Python file is also a valid Enaml file, though the
converse is not necessary true. The tight integration with Python means that
the developer feels at home and uses standard Python syntax when expressing how
their data models bind to the visual attributes of the UI.

As a testament to just how natural it is to define a UI in the Enaml language,
the following snippet of code is the entire definition for the screenshot of
the window above. Even before any introduction to the language, it is clear
that the structure of the UI is reflected directly in the structure of the
code. This makes the code easier to read, write, and maintain; which in turn
slashes development time and leads to more robust applications.

from enaml.widgets.api import (
 MainWindow, MenuBar, Menu, Container, Form, Label, Field, PushButton
)

enamldef Main(MainWindow):
 title = 'Window'
 MenuBar:
 Menu:
 title = 'Item 1'
 Menu:
 title = 'Item 2'
 Menu:
 title = 'Item 3'
 Container:
 Form:
 Label:
 text = 'Label 1'
 Field:
 pass
 Label:
 text = 'Label 2'
 Field:
 pass
 PushButton:
 text = 'Button'

Enaml Advantages

The advantages that Enaml provides to a Python application developer over the
typical UI frameworks are numerous. The most salient of these are focused on
helping the developer write robust and flexible code.

Ease of Prototyping

	The developer can easily visualize what an Enaml UI will look like.

	The data models do not need to be bound to the UI in advance.

The Enaml syntax is specifically designed to make it easy for a developer to
quickly glance at a UI specification and build a mental model of how that UI
will visually appear on the screen. Furthermore, Enaml does not require data
models to be bound to the UI in advance. This feature allows a developer to
prototype the visual aspects of the UI in isolation. Enaml prototypes can be
developed quickly enough that the need for mockup tools is almost eliminated.

Strict Model-View Separation

	The MVC [http://en.wikipedia.org/wiki/Model-view-controller] pattern can be confusing to follow in certain UI frameworks. In
Enaml, the pattern in baked into the language.

	Enaml’s data binding operators largely eliminate the need for an explicit
controller class.

The Model-View-Controller (MVC [http://en.wikipedia.org/wiki/Model-view-controller]) pattern is a well established standard
pattern for structuring user interface applications. Unfortunately, it is not
always well followed and the procedural interfaces of many UI toolkits can make
it difficult to identify the conceptual boundaries of the various components.
The Enaml language is structured to enforce strict Model-View separation. The
data binding operators in Enaml largely eliminate the need for a controller
class, although they do not prevent the use of one for advanced use cases. When
a developer encounters a situation which is difficult to express in Enaml, it
usually indicates that the data models are not correctly factored. Think of
this as a built-in sanity check.

UI Toolkit Agnostic

	Enaml is capable of using almost any UI toolkit as a rendering backend.

	Developers code against the declarative Enaml interfaces, and do not need to
worry about how those get translated into procedural toolkit calls.

Enaml is UI toolkit agnostic. That is, Enaml is capable of using nearly any UI
toolkit as a rendering backend. This is advantageous because it allows the
developer to code against the declarative Enaml interfaces and not care about
how the interfaces are translated to the procedural toolkit calls. This level
of indirection allows the Enaml interfaces to be consistent and extract the
maximum performance from the underlying rendering engine. It also allows an
Enaml application to be run transparently across any of the available backends
without requiring any changes to the application code.

 Installation

Installation

Installing Enaml is a straight-forward process. There are three approaches to
choose from.

Anaconda

If you use the Anaconda [https://store.continuum.io/cshop/anaconda] Python distribution platform (or Miniconda [https://conda.io/miniconda.html],
its lighter-weight companion), the latest release of Enaml can be installed
using conda from the conda-forge channel:

$ conda install enaml -c conda-forge

Wheels

If you don’t use Anaconda, you can install Enaml and its dependencies,
pre-compiled, through PIP, for most common platforms.

You will need three things:

	Python [http://python.org]

	Enaml (and its dependencies)

	a toolkit rendering library

Python

Enaml is a Python framework and requires a supported Python runtime. Enaml
currently supports Python 3.8, Python 3.9 and Python 3.10.

Note

Currently Enaml does support the match syntax introduced in Python 3.10 in
.enaml files

The most recent Python releases are available on the Python Downloads [http://python.org/download] pages.
Installers are available for Windows and OSX. Linux users should install Python
using their OS package manager.

Enaml and Dependencies

You can install enaml and (almost) all of its dependencies through the pip
command line.:

$ pip install enaml

Toolkit Rendering Library

Enaml’s declarative widgets provide a layer of abstraction on top of the
widgets of a toolkit rendering library. Enaml ships with a backend based on Qt5/6
and third-party projects such as enaml-web [https://github.com/codelv/enaml-web] and enaml-native [https://github.com/codelv/enaml-native] provides
alternative backends.

Enaml uses the QtPy [https://pypi.python.org/pypi/QtPy/] library as compatibility layer to support transparently both
Qt 5 and Qt 6 through either PyQt or PySide. PyQt5 has been supported for a longer
time and has been more heavily tested.

Starting with Enaml 0.13.0, you can specify a rendering library using extra_requires,
ie:

$ pip install enaml[qt5-pyqt]

Currently, you can use either [qt5-pyqt] to use PyQt5, [qt5-pyside] to
use Pyside2, or [qt6-pyqt] and [qt6-pyside] if you want to use Qt6.

Starting with Enaml 0.15.1, you can also specify additional extras needed for specific
widgets:

	Scintila widget: [scintilla-qt5-pyqt] or [scintilla-qt6-pyqt]

	Matplotlib canvas: [matplotlib-qt]

	IPython console: [ipython-qt]

	WebView (extra are needed only for PyQt): [webview-qt5-pyqt] or [webview-qt6-pyqt]

	VTK canvas: [vtk-qt]

Note

	One can specify multiple extras separated by ,::
	$ pip install enaml[qt5-pyqt,ipython-qt]

Note

There is no pyqt5 wheel available for 32-bit Linux.

Compiling it yourself: The Hard Way

Building Enaml from scratch requires a few external dependencies. The
sections below describe how to install Enaml and all of its dependencies from
scratch. The instructions assume that the user’s system has a C++ compiler and
the Git [http://git-scm.com] command line tools installed and available on the system path.

Pip [https://pip.pypa.io/en/stable/]

Pip is the default package manager for Python. The installation instructions
below assume that Pip has been installed in the target Python environment
(see Pip install [https://pip.pypa.io/en/stable/installing/]).

Ply [http://www.dabeaz.com/ply]

The Enaml framework extends the grammar Python language with new declarative
syntax constructs. To accomplish this, Enaml has a fully compliant Python
3.7/3.8/3.9 lexer and parser with added support for the new syntax. These
components are built using the PLY parsing tools, which contain Python
implementations of lex and yacc.

Ply can be installed with the pip install command of Pip [https://pip.pypa.io/en/stable/]:

$ pip install ply

QtPy [https://pypi.python.org/pypi/QtPy/]

The Enaml framework uses the QtPy [https://pypi.python.org/pypi/QtPy/] library as a compatibility shim between
the various toolkit rendering libraries.

QtPy can be installed with the pip install command of Pip [https://pip.pypa.io/en/stable/]:

$ pip install QtPy

And you also need a toolkit rendering library either PyQt5 [https://pypi.org/project/PyQt5/], PyQt6 [https://pypi.org/project/PyQt6/], Pyside2 [http://wiki.qt.io/Qt_for_Python],
or PySide6 [https://doc.qt.io/qtforpython/contents.html] which all be installed through pip.

Kiwisolver [https://github.com/nucleic/kiwi]

Enaml’s layout engine is built on top of the Cassowary [http://www.cs.washington.edu/research/constraints/cassowary] linear constraint
optimizer. This is the same algorithm used by the Cocoa Autolayout engine in
OSX. Kiwisolver provides Python bindings to a C++ implementation of the
Cassowary algorithm.

Kiwisolver can be installed with the pip install command of Pip [https://pip.pypa.io/en/stable/]:

$ pip install kiwisolver

Bytecode [https://github.com/vstinner/bytecode]

The Enaml compiler depends on the bytecode module, which is a Python
library used to generate and modify bytecode.

Bytecode can be installed with the pip install command of Pip [https://pip.pypa.io/en/stable/]:

$ pip install bytecode

Atom [https://github.com/nucleic/atom]

Atom is the Python framework which provides the foundational object model for
Enaml. Atom objects are extremely lightweight, fast, and support a robust
implementation of the Observer Pattern [http://en.wikipedia.org/wiki/Observer_pattern]. If these traits seem all too ideal
for a project like Enaml, it’s because Enaml was the primary motivation behind
the development of Atom.

Atom can be installed with the pip install command of Pip [https://pip.pypa.io/en/stable/]:

$ pip install atom

Alternatively, cloning and building the latest (unstable dev) version of Atom from source is simple:

$ git clone https://github.com/nucleic/atom.git
$ cd atom
$ pip install .

Enaml [https://github.com/nucleic/enaml]

The last item on the list is Enaml itself. The latest (unstable dev) version
can be installed with just a few commands:

$ git clone https://github.com/nucleic/enaml.git
$ cd enaml
$ pip install .

Supported Platforms

Enaml is known to run on Windows, OSX, and Linux; and compiles cleanly
with MSVC, Clang, GCC, and MinGW. However, primary development of the
framework occurs on Windows (7, 8 and 10), so some quirks and bugs may be
present on the other platforms. If you encounter a bug, please report
it on the Issue Tracker [http://github.com/nucleic/enaml/issues].

 Anatomy of Enaml

Anatomy of Enaml

This article describes the core fundamentals for building an Enaml application.
It proceeds by creating a simple runnable example which shows how the various
syntactic constructs and frameworking components combine to create a UI
application.

See also

	For the motivations and background on Enaml, see the Introduction.

	For connecting data models to the UI, see Enaml syntax and Data Models.

	For advanced articles on the Enaml language and framework,
see the Developer Guides.

Enaml Syntax

The Enaml syntax has been designed expressly for the ease of reading, writing,
and visualizing user interfaces. The simplest way to become familiar with the
syntax is to look at a code sample and break it down piece by piece. The
snippet below is the code that will be used for the example in this article.

enamldef PersonView(Window):
 attr person
 title = 'Person View'
 Form:
 Label:
 text = 'First Name'
 Field:
 text := person.first_name
 Label:
 text = 'Last Name'
 Field:
 text := person.last_name

Before going any further, take a glance over the code and see if you can
visualize how the UI will look and behave, despite the fact that you have no
other knowledge of Enaml.

enamldef

The very first thing you’ll notice is a new keyword enamldef. Recall that
Enaml is a superset of the Python language and this keyword is one of Enaml’s
extensions to Python. The keyword is used to declare that the block of code
which follows is the definition of an Enaml view.

Tree Structure

Enaml describes a UI as a tree of elements. Like Python, the Enaml syntax is
sensitive to indentation, but where indentation in Python defines scope and
control flow, in Enaml it defines tree structure. Each successive level of
indentation in Enaml defines a parent-child relationship. In the example then,
the Label and Field elements are children of the Form, and the
Form is a child the PersonView.

Element State

Elements are customized by binding data to their attributes. In the example,
the text attributes of the Label elements and the title attribute
of the PersonView element are assigned static string values, and the
text attributes of the Field elements are bound to data in a data
model. The specifics of data model binding are covered in Enaml syntax and Data Models.

Changing the value of an element’s attributes will change the visual appearance
of the widget in the view. The Enaml compiler ensures that a developer does not
bind data to invalid attributes or to attributes which do not exist.

Inheritance

Enaml views can be extended through inheritance. In the example, PersonView
inherits from the builtin Window element, which reprents a top-level window
frame widget. It then defines a Form as the child of the window and which
will be automatically used as the main content of the window.

Inheritance in Enaml is not limited to the builtin elements. Any element which
is created with the enamldef keyword can be used as the base element for
another enamldef and therefore further customized. In fact, the language
requires a single base element in order to create a new enamldef.
Multiple inheritance is not supported.

Application Structure

An Enaml application consists of a collection of .enaml and .py files.
Canonically, the user interface definitions for the application live in the
.enaml files, and the application data models and business logic live in
the .py files. There is typically an application entry point defined in a
.py file which imports the various user interface definitions and data
models, creates an instance of an Enaml application object, shows a window on
the screen, and then starts the application event loop. For anyone having
developed a user interface application before, this will all sound familiar.

View Files

The user interface definitions for an Enaml application live inside .enaml
files. Inside these files, the developer uses the language features provided
by the Enaml framework, along with regular Python code, to define the views
for the application. Since Enaml is a superset of the Python language, these
files can contain arbitrary Python code alongside the enamldef elements.
However, it is recommended that the contents of .enaml files be limited to
views and supporting code, and business logic and models be kept in separate
.py files.

The definition of the view for this example was provided above. The only thing
it needs to become a fully functional .enaml file is the addition of the
imports for the builtin elements:

person_view.enaml
from enaml.widgets.api import Window, Form, Label, Field

enamldef PersonView(Window):
 attr person
 title = 'Person View'
 Form:
 Label:
 text = 'First Name'
 Field:
 text := person.first_name
 Label:
 text = 'Last Name'
 Field:
 text := person.last_name

Model Files

The application data models, business logic, and other support code live in
.py files. While Enaml has the capability to interface with nearly any
data model framework, it supports the Atom [https://github.com/nucleic/atom] model framework out of the box.
The full discussion of working with data models is given in the Enaml syntax and Data Models
article. For now, the simple model given below is sufficient for the current
example, and should be fairly self-explanatory.

person_model.py
from atom.api import Atom, Str

class Person(Atom):
 first_name = Str()
 last_name = Str()

Startup File

An Enaml application is launched with an entry point .py file. How this
file is implemented is left entirely up to the developer. At a minimum, it
must do three things:

	Create an Enaml application instance.

	Create an instance of an Enaml view and call .show() on the view.

	Call .start() on the application instance.

For the current example, the following startup file is used:

main.py
import enaml
from enaml.qt.qt_application import QtApplication

from person_model import Person

if __name__ == '__main__':
 with enaml.imports():
 from person_view import PersonView

 john = Person(first_name='John', last_name='Doe')

 app = QtApplication()

 view = PersonView(person=john)
 view.show()

 app.start()

In the startup file, there are a couple of things to note:

	the import of the .enaml file into the Python namespace

	the creation of a toolkit specific application object.

Since the Enaml language is not valid Python (remember, Enaml is a superset
of Python), it must be transformed before it can be used from Python. The
enaml.imports() context manager is the gateway which makes this
transformation possible. From within that context, Python’s import statement
can be used to import .enaml files into a module’s namespace.

The second, less magical part of the startup file is the creation of the
toolkit-specific application object. With rare exception, this is the only time
when writing an Enaml application where the developer must code anything which
relates to a specific toolkit backend. The application object which is created
dictates which toolkit backend will be used to render the user interface. In
this example, the Qt toolkit is used. If, for example, the developer wished to
use another backend, an application object for that backend would be created
instead.

Pulling it all together and launching the application results in the following
view:

C:> python main.py

[image: ../_images/person_view.png]

The structure of the window should come as no surprise, as it is directly
reflected in the Enaml code from which it was created!

 Enaml syntax and Data Models

Enaml syntax and Data Models

Enaml defines a superset of the Python language, which means that any valid
Python code is valid in an enaml file, including function and class definitions.
The following sections present the extension provided by Enaml to declare views
and bind it to a model.

Note

Just like in any Python file, you need to import the definitions of the
objects you use. One minor difference between standard Python files and
Enaml files is that inside an enaml file you do not need to use the
enaml.imports() context manager when importing objects defined in an
Enaml file.

Enamldef syntax

To define a view element, one uses the enamldef keyword in a way similar to
the class keyword in a normal Python file. Your widget must inherit from
a widget, either a builtin one or one defined using an enamldef and cannot
inherit from several widgets.

In the body of the declaration, you add widget by simply declaring it. The
parent/child is directly encoded in the indentation. Furthermore, you can
add to each widget an id which must unique inside the declaration. This id
can be used to reference it in the layout (see Constraints Layout), or to access
one of its attribute.

enamldef MyWindow(Window):

 Container: cont:

 Field: field:
 pass

Defining attributes and aliases

When defining a widget using the enamldef keyword, one can add custom
attributes to the widget using the attr keyword. Furthermore, you can enforce
type validation using the following syntax.

attr my_attr : set = {1, 2, 3}

Note

One can specify a default value using = even if no type validation is
specified.

One can also define the equivalent of atom.Event, that is to say an attribute
that does not store the value it is assigned but simply fires a notification
each time it is assigned a value. To do so, simply replace the attr keyword
with the event keyword. Type validation works in the same way as for regular
attr defined attributes.

Additionally, one can define an attribute that simply allows access to a child widget
or a child widget attribute in a transparent way using the alias
keyword. The syntax is presented below.

enamldef MyWindow(Window):

 alias child_widget : cont

 alias child_widget_attr : field.text

 Container: cont:
 Field: field:
 pass

Note

To avoid clashes between the ids attributed to child widgets in different
widgets, one cannot access a widget by its id outside of the declaration.
This means that the following does not work and raises an AttributeError.
This is why you need an alias if you need to access to the inner widget.

enamldef MyWindow(Window):

 Container: cont:
 pass

MyWindow().cont

Binding Operators

To describe how a widget should be connected to the model driving it, Enaml
uses a set of four operators:

	=
	Assignment. Right hand side can be any expression. The assignment will be
the default value, but the value can be changed later through Python code
or other expression execution.

	:=
	Delegation. Right hand side must be a simple lvalue, like foo.bar or
spam[idx]. Non-lvalue expressions here are a syntax error. The
value of the view property and value of the attribute are synced,
but the type checking of the view property is enforced.

	<<
	Subscription. Right hand side can be any expression or statement.
In the case of an expression, the expression will be parsed for
dependencies, and any dependency which is a member attribute on a Atom
class will have a listener attached. When the listener fires, the
expression will be re-evaluated and the value of the view property
will be updated.
The behavior for statements is quite similar. Whichever value the statement
return will be set to the left-hand side.

	>>
	Update. Right hand side must be a simple lvalue. The attribute will
receive the view property’s value any time it changes.

	::
	Notification. Right hand side can be any statement. Additionally, an
indented block of code can also be used. The statement/block will be
evaluated any time the view property changes. Inside this block, one can
access the notification that triggered the execution under the name
change. In particular when using Atom object for the model, the new
value can be accessed as change['value']

Declarative function definition and overriding

In addition to defining attributes inside an enamldef declaration, one can
define the equivalent of methods, or override them. In the context of
enamldef objects, we will refer to them as declarative functions.

Such functions are defined using the func keyword, and obey the scoping
rules described in the next section. In particular, self can be used to
access the instance of the widget on which they are defined but does not need
to be listed explicitly in the arguments (and should not be).

Such functions can be overridden using a slightly different syntax, as
illustrated below:

enamldef MyWindow(Window):

 attr a = 2

 func my_func():
 return 3*self.a

enamldef MyCustomWindow(MyWindow):

 attr a = 2

 my_func => ():
 return 3*a

Scoping Rules

	Imports are global and accessible to everything in the file.

	Each top-level item defines its own local namespace. This namespace
includes all elements that have a declared identifier.

	Each expression has its local namespace that is the union of the block
locals and the attribute namespace of the object to which the expression
is bound. In other words, self is implicit. However, a self exists in
this local namespace in order to break naming conflicts between block
locals and attribute names. To any C++ or Java developers, this will seem
natural.

	Each expression has a dynamic scope which exists between its local scope
and the global scope. This scope is the chained union of all attribute
namespaces of the ancestor tree of the object (i.e. the parents of the widget
on which teh expression is defined) to which the expression is bound.

We illustrate these rules and of their consequences below:

enamldef MyWindow(Window):

 attr a = 2

 attr b: str = ""

 a::
 b = 1
 self.b = "test"

 b::
 print(change)
 print(f"{a}")

In the example above, in the notification handler for a, we first create a
new local variable b, which is scoped to the handler (i.e. it does not
exist outside). In order to set the attribute b of the widget we need to
use the implicit self referencing the widget. As a consequence, under
Python 3.8, the walrus operator := will always create a local variable and
will never modify the state of the widget.

In the notification handler of b, we first access the implicit change
dictionary which is provided by the model. Second, we access the variable a
which does not exist in the local namespace and is hence found in the widget
namespace. This is equivalent to self.a.

enamldef MyLabel(Label):

 text << f"{a}"

enamldef MyWindow(Window):

 attr a = 2

 MyLabel:
 pass

enamldef MyWindow2(Window):

 attr b = 2

 MyLabel:
 pass

In the above example, MyWindow can be instantiated and the label text will
be "2". It is because the parent of MyLabel i.e. MyWindow has the
name a in its namespace. On the other end, MyWindow2 will generate a
NameError [https://docs.python.org/3/library/exceptions.html#NameError] since a is not defined in MyLabel scope nor in any
of its parents scope.

Using this feature requires to properly document the expectation of the widget
since otherwise the reason for the NameError [https://docs.python.org/3/library/exceptions.html#NameError] may be hard to track. It
is however a powerful feature to avoid manually propagating a name through the
whole hierarchy. One typical example is when using the Enaml workbench with the
UI plugin to build a plugin application. In such application, accessing the
workbench object which is set on the main window is very common since the
workbench orchestrate the interaction between plugins. Since it is set on the
main window, any widget which can trace its ancestry to it, which is in the
general the case for all widgets, can use the name workbench safely.

 Constraints Layout

Constraints Layout

Enaml widgets come in two basic types: Containers and Controls. Controls
are conceptually single UI elements with no other Enaml widgets inside them,
such as labels, fields, and buttons. Containers are widgets which contain
other widgets, usually including information about how to layout the widgets
that they contain. Examples of containers include top-level windows, scroll
areas and forms.

Enaml uses constraints-based layout implemented by the Cassowary layout system.
Constraints are specified as a system of linear inequalities together with an
error function which is minimized according to a modified version of the
Simplex method. The error function is specified via assigning weights to the
various inequalities. The default weights exposed in Enaml are 'weak',
'medium', 'strong', 'required', and 'ignored', but other values
are possible within the system, if needed. While a developer writing Enaml
code could specify all constraints directly, in practice they will use a set of
helper classes, functions and attributes to help specify the set of constraints
in a more understandable way.

Every widget knows its preferred size, usually by querying the underlying
toolkit, and can express how closely it adheres to the preferred size via its
hug_width, hug_height, resist_width and resist_height,
limit_width and limit_height attribute which take one of the previously
mentioned weights. These are set to reasonable defaults for most widgets, but
they can be overriden. The hug attributes specify how strongly the widget
resists deformation by adding a constraint of the appropriate weight that
specifies that the dimension be equal to the preferred value, while the
resist attributes specify how strongly the widget resists compression by
adding a constraint that specifies that the dimension be greater than or equal
to the preferred value. The limit attributes specify how strongly the
widget resists expansion by adding a constraint that specifies that the
dimension be smaller than or equal to the preferred value

Containers can specify additional constraints that relate their child widgets.
By default a container simply lays out its children as a vertical list and
tries to expand them to use the full width and height that the container has
available. Layout containers, like Form, specify different default constraints
that give automatic layout of their children, and may provide additional hooks
for other widgets to use to align with their significant features.

Additional constraints are specified via the constraints attribute on the
container. The simplest way to specify a constraint is with a simple equality
or inequality. Inequalities can be specified in terms of symbols provided
by the components, which at least default to the symbols for a basic box model:
top, bottom, left, right, v_center, h_center, width
and height. Other components may expose other symbols: for example the
Form widget exposes midline for aligning the fields of multiple forms
along the same line, and a Container exposes various contents symbols
to account for padding around the boundaries of its children.

enamldef Main(Window):
 Container:
 constraints = [
 # Pin the first push button to the top contents anchor.
 pb1.top == contents_top,

 # Relate the left side of the push button to the width
 # of the container.
 pb1.left == 0.3 * width,

 # Relate the width of the push button to the width of
 # the container
 pb1.width == 0.5 * width,

 # Pin the second push button to the left contents anchor.
 pb2.left == contents_left,

 # Relate the top of the push button to width of the first
 # push button.
 pb2.top == 0.3 * pb1.width + 10
]
 PushButton: pb1:
 text = 'Horizontal'
 PushButton: pb2:
 text = 'Long Name Foo'

However, this can get tedious, and so there are some helpers that are
available to simplify specifying layout. These are:

	spacer
	A singleton spacer that represents a flexible space in a layout
with a minimum value of the default space. Additional restrictions
on the space can be specified using ==, <= and >= with
an integer value.

	spacer.flex()
	A flexible spacer that has a hard minimum but also a weaker preference
to be no larger than that minimum.

horizontal(*items) or hbox(*items)

	vertical(*items) or vbox(*items)
	These four functions take a list of symbols, widgets and spacers and
create a series of constraints that specify a sequential horizontal
or vertical layout where the sides of each object in sequence abut
against each other.

	align(variable, *items)
	Align the given string variable name on each of the specified items.

	grid(*rows, **config)
	A function which takes a variable number of iterable rows and
arranges the items in a grid according to the configuration
parameters.

	factory(func, *args, **kwargs)
	A function which takes a function which should return the set of
constraints to use. The factory function is called each time the layout
can change (widget addition, deletion, etc).The arguments are passed
are passed to function.

By using appropriate combinations of these objects you can specify complex
layouts quickly and clearly.

enamldef Main(Window):
 Container:
 constraints = [
 # Arrange the Html Frame above the horizontal row of butttons
 vbox(
 html_frame,
 hbox(
 add_button, remove_button, spacer,
 change_mode_button, spacer, share_button,
),
),

 # Weakly align the centers of the Html frame and the center
 # button. Declaring this constraint as 'weak' is what allows
 # the button to ignore the constraint as he window is resized
 # too small to allow it to be centered.
 align('h_center', html_frame, change_mode_button) | 'weak',

 # Set a sensible minimum height for the frame
 html_frame.height >= 150,
]
 Html: html_frame:
 source = '<center><h1>Hello Enaml!</h1></center>'
 PushButton: add_button:
 text = 'Add'
 PushButton: remove_button:
 text = 'Remove'
 clicked :: print('removed')
 PushButton: change_mode_button:
 text = 'Change Mode'
 PushButton: share_button:
 text = 'Share...'

Alternatively one can override the layout_constraints function in the
enaml definition.

enamldef Main(Window):
 title = 'Custom Constraints'
 Container:
 layout_constraints => ():
 rows = []
 widgets = self.visible_widgets()
 row_iters = (iter(widgets),) * 2
 rows = list(zip_longest(*row_iters))
 return [grid(*rows)] + [align('v_center', *row) for row in rows]
 Label:
 text = 'Name'
 Field:
 pass
 Label:
 text = 'Surname'
 Field:
 pass
 PushButton:
 text = 'Click me'

 Developer Guides

Developer Guides

The Enaml developer guides are intended as the primary reference for learning
and becoming an effective developer with the framework. The guides covers a
variety of topics ranging from language features and syntax rules to
application development and best practices. For the implementation details of
the framework see the Architecture Reference.

Style Sheets

Styles sheets are a powerful feature which allow the developer to
customize the visual appearance of a view independent from the
view’s structural definition. Inspired by CSS, but with all the
dynamism provided by the Enaml language.

Language-Based Tools

Enaml introduces a new syntax. Language-based tools can be
configured to recognise this syntax. Several such configurations and
plug-ins are provided.

Enaml Workbench Developer Crash Course

Enaml Workbenches provide a set of low-level components which can
be used to develop high-level plugin applications. Workbenches
enable the developer to write large UI applications which can be
safely extended at runtime by other developers.

 Style Sheets

Style Sheets

Enaml style sheets are a powerful feature which allow the developer to
customize the visual appearance of a view independent from the view’s
structural definition. The concepts and nomenclature used in Enaml style
sheets are heavily based on CSS and WPF, but are adapted to the dynamic
and declarative world of Enaml.

Overview

Cascading Style Sheets [http://en.wikipedia.org/wiki/Cascading_Style_Sheets] is a well known technology for specificing the look
and feel of documents written in XML markup, and is most commonly used to
style HTML web pages. The primary design goal of CSS is to separate document
content from document presentation, resulting in more scalable, flexible, and
maintainable code.

WPF Styling [http://msdn.microsoft.com/en-us/library/ms745683.aspx] shares the same documents separation goals as CSS, but is
implemented using the same markup language as the document structure. WPF
styles also include development features which are not present in CSS
(such as data-driven style striggers), but which are immensely useful in
desktop application development.

Enaml style sheets combine the successful concepts from both CSS and WPF.
Style sheets:

	use selectors to match style rules to widgets

	cascade across the object hierarchy of the view

	are written with the same language as the rest of view

	are fully dynamic and data-driven

There are three classes involved in creating a style sheet:
StyleSheet,
Style, and
Setter. The developer arranges these classes
into a hiearchy declared on a Stylable
widget in order to apply the styling to that widget hierarchy. The following
simple example shows how to set the text color of all
PushButton widgets in
a Window to blue:

from enaml.widgets.api import (
 Window, Container, PushButton
)
from enaml.styling import (
 StyleSheet, Style, Setter
)

enamldef Main(Window):
 title = 'Style Sheet'
 StyleSheet:
 Style:
 element = 'PushButton'
 Setter:
 field = 'color'
 value = 'blue'
 Container:
 PushButton:
 text = 'First'
 PushButton:
 text = 'Second'
 PushButton:
 text = 'Third'

[image: ../_images/simple_style.png]

The StyleSheet class forms the root
of the hierarchy for a style sheet. Its sole purpose is to provide an
aggregation point for the Style objects
defined for the style sheet.

The Style class serves the role of the selector
in typical CSS parlance. It also serves as an aggregation point for the style
Setter objects. The various attributes of the
style combine to form a rule against which all the widgets for the style sheet
are tested. If a widget is a match for the rule, then the style setters are
applied to that widget. The order in which multiple matching styles are applied
is governed by the rules of Selectors, Specificity, and
Cascading.

The Setter class provides the information
needed to style a single aspect of an object in the form of field and
value attributes. Both attributes accept strings values and represent the
field name and value to apply to a widget’s style. A setter is declared as
a child of a Style object and is applied to any
widget which matches the style rule. Multiple setters may be defined on a
single style, and they are applied in the order in which they are declared.

See the List of Fields reference section for the list of supported
style field names.

Selectors

A style sheet consists of a list of Style
objects, each having a list of Setter objects
which will be applied to any Stylable widgets
which match the style’s selector.

The style selector is made up of three attributes on the
Style object:

	element - This is a string which will match the name of the type of the
stylable object or any of its subtypes. For example, "Field" will match
all instances of Field or any of its
subtypes. An empty string will match all types. Multiple types can be
specified by separating them with a comma, which will match using logical
OR semantics.

	style_class - This is a string which will match the style_class
attribute on a stylable object. This is very similar to the concept of CSS
classes. An empty string will match all style classes. Multiple style classes
can be specified by separating them with a comma, which will match using
logical OR semantics.

	object_name - This is a string which match the name attribute on a
stylable object. This is very similar to the concept of CSS identifiers.
An empty string will match all object names. Multiple object names can be
specified by separating them with a comma, which will match using logical
OR semantics.

All three selector must be a match for a given widget for the style to be
considered a match. See the section on Specificity for details on
how the strength of the match is computed.

Note

The style_class attribute on a
Stylable object can be assigned a
space-separated string, which indicates that the object belongs to
more than one style class. Combined with the comma-separated style
selectors, this provides a very powerful mechanism for targeted
selection.

Unlike CSS and WPF, Enaml style sheets do not provide selectors which
match based on object attribute values. Developers should instead use
Enaml’s dynamic operators to update the style class of an object at
runtime. The styling engine is optimized for this mode of operation.

The following simple example shows each of the selectors in use:

from enaml.widgets.api import (
 Window, Container, PushButton, Field,
 CheckBox
)
from enaml.styling import (
 StyleSheet, Style, Setter
)

enamldef Main(Window):
 title = 'Style Sheet'
 StyleSheet:
 Style:
 element = 'PushButton'
 Setter:
 field = 'color'
 value = 'red'
 Style:
 style_class = 'blue-class'
 Setter:
 field = 'color'
 value = 'blue'
 Style:
 object_name = 'special'
 Setter:
 field = 'color'
 value = 'green'
 Setter:
 field = 'font-weight'
 value = 'bold'
 Container:
 PushButton:
 text = 'One'
 PushButton:
 text = 'Two'
 Field:
 style_class = 'blue-class'
 text = 'Three'
 CheckBox:
 style_class = 'blue-class'
 text = 'Four'
 checked = True
 PushButton:
 text = 'Five'
 name = 'special'

[image: ../_images/selector_style.png]

Specificity

The nature of style selectors is such that a single style can be matched to
multiple widgets, and a widget can be matched to multiple styles. This is the
main feature which makes style sheets so powerful and expressive! However, this
flexibility presents the possibility for conflicts in a widget’s style
specification. What to do if a widget matches multiple styles, all of which
have a setter which defines a value for the color field? These sorts of
conflicts are resolved by examining the specificity of a selector match.

A selector’s specificity is nothing more than an integer which indicates how
strongly a given widget is a match for the style. It is computed according to
the following formula:

	Start with a specificty of 0.

	Add 1 if the element selector matches the item.

	Add 16 for every style_class which matches the item.

	Add 256 if the object_name selector matches the item.

	The final value is the specificity of the match.

When the styling engine is computing the style to apply to a widget for a
given style sheet, it computes the specificity for all matching styles and
then sorts them according to that specificity. Ties are broken by the order
in which the styles were declared. The styles are then applied in order from
least-specific to most-specific.

The following simple example demonstrates specificity:

from enaml.widgets.api import (
 Window, Container, PushButton, Field
)
from enaml.styling import (
 StyleSheet, Style, Setter
)

enamldef Main(Window):
 title = 'Style Sheet'
 StyleSheet:
 Style:
 element = 'PushButton'
 Setter:
 field = 'color'
 value = 'blue'
 Style:
 element = 'PushButton'
 style_class = 'alpha'
 Setter:
 field = 'color'
 value = 'red'
 Style:
 element = 'PushButton'
 style_class = 'beta'
 Setter:
 field = 'color'
 value = 'green'
 Style:
 style_class = 'alpha, beta'
 Setter:
 field = 'color'
 value = 'steelblue'
 Setter:
 field = 'font'
 value = 'bold 12pt Arial'
 Style:
 object_name = 'special'
 Setter:
 field = 'color'
 value = 'goldenrod'
 Container:
 PushButton:
 text = 'One'
 PushButton:
 text = 'Two'
 style_class = 'alpha'
 PushButton:
 text = 'Three'
 style_class = 'beta'
 Field:
 text = 'Four'
 style_class = 'alpha beta'
 PushButton:
 text = 'Five'
 style_class = 'alpha beta'
 name = 'special'

[image: ../_images/specificity_style.png]

Cascading

A style sheet can be applied to the global
Application and to any
Stylable object. The base
Widget class inherits the
Stylable class, so all standard Enaml
widgets support style sheets. A widgets effective style sheet is computed
by merging the widget’s style sheet with all ancestor style sheets, and
finally with the application stylesheet.

When a conflict arises between style sheets, a widget’s own style sheet takes
precedence over any ancestor style sheet or the application style sheet,
regardless of the specifity of the match in the conflicting sheet. This chain
of stylesheets is know as the cascade, and provides a very powerful and
flexible approach to styling. For example, it allows a developer to write an
application-wide style sheet which covers most cases, and selectively override
rules for particular widgets on a case-by-case basis.

The following simple example shows style sheet cascading in action:

from enaml.widgets.api import (
 Window, Container, PushButton
)
from enaml.styling import (
 StyleSheet, Style, Setter
)
from enaml.qt.qt_application import (
 QtApplication
)

enamldef AppSheet(StyleSheet):
 Style:
 element = 'PushButton'
 Setter:
 field = 'color'
 value = 'blue'

enamldef View(Window):
 title = 'Style Sheet'
 Container:
 Container:
 padding = 0
 StyleSheet:
 Style:
 element = 'PushButton'
 Setter:
 field = 'color'
 value = 'red'
 PushButton:
 text = 'One'
 PushButton:
 text = 'Two'
 PushButton:
 text = 'Three'
 PushButton:
 text = 'Four'
 PushButton:
 text = 'Five'
 StyleSheet:
 Style:
 Setter:
 field = 'color'
 value = 'green'

def main():
 app = QtApplication()
 app.style_sheet = AppSheet()
 view = View()
 view.show()
 app.start()

[image: ../_images/cascade_style.png]

Pseudo-Classes

A pseudo-class augments a style selector to require that an element have a
special state in order for it to be a match for the style. Usually, this state
will be the result of some external user interaction and may not be reflected
in the structure of the view. For example the 'hover' pseudo-class will
cause an element to be a match for the style only when the user hovers over
the element with the mouse.

Pseudo-classes are specified by assigning a string to the pseudo_class
attribute of a Style object. Multiple
pseudo-classes can be chained together with a colon, which will match using
logical AND semantics. Comma separated classes are also allowed, which will
match using logical OR semantics. A pseudo-class can also be negated with
the exclamation operator.

See the List of Pseudo-Classes reference section for the list of
supported pseudo-classes.

The following simple example demonstrates the use of pseudo-classes:

from enaml.widgets.api import (
 Window, Container, Field, CheckBox
)
from enaml.styling import (
 StyleSheet, Style, Setter
)

enamldef Main(Window):
 title = 'Style Sheet'
 StyleSheet:
 Style:
 element = 'CheckBox'
 pseudo_class = 'checked'
 Setter:
 field = 'color'
 value = 'indianred'
 Style:
 element = 'Field'
 pseudo_class = 'focus'
 Setter:
 field = 'color'
 value = 'green'
 Container:
 CheckBox:
 text = 'One'
 CheckBox:
 text = 'Two'
 Field:
 text = 'Three'

[image: ../_images/pseudo_class_style.png]

Pseudo-Elements

A pseudo-element is similar to a pseudo-class, but instead of specifying a
special state, it is used to specify a subcontrol of a complex control. For
example, the 'title' pseudo-element can be used to style the title text
of a GroupBox widget.

Pseudo-elements are specified by assigning a string to the pseudo_element
attribute of a Style object. Multiple pseudo-
elements can be specified by separating them with a comma, which will match
using logical OR semantics.

See the List of Pseudo-Elements reference section for the list of
supported pseudo-elements.

The following simple example demonstrates the use of pseudo-elements:

from enaml.widgets.api import (
 Window, Container, GroupBox, PushButton
)
from enaml.styling import (
 StyleSheet, Style, Setter
)

enamldef Main(Window):
 title = 'Style Sheet'
 StyleSheet:
 Style:
 element = 'GroupBox'
 pseudo_element = 'title'
 Setter:
 field = 'color'
 value = 'indianred'
 Container:
 GroupBox:
 title = 'Group Box'
 PushButton:
 text = 'One'
 PushButton:
 text = 'Two'
 PushButton:
 text = 'Three'

[image: ../_images/pseudo_element_style.png]

Dynamism

As the examples in this article have shown, all of the classes which are used
to define an Enaml style sheet are declarative; just like the standard Enaml
widget classes. This means that all of Enaml’s language and framework features,
such as subscription operators, templates,
Include,
Looper, etc. work with style sheets in the
same way that they work with widgets. This gives the developer virtually
unlimited flexibility in defining the styling for an application.

Inheritance

In typical CSS, fields like font and color, unless specified, will be
inherited from a parent element. Other fields can be forcibly inherited with
the inherit keyword. With Enaml stylesheets, inhertance is not supported in
any form. Developers should rely on Cascading and Specificity to
style their applications appropriately.

List of Fields

The following table lists all of the fields supported by Enaml style sheets.
The value accepted by a field depends on the field’s type. Unless specified
in the description, the fields below are supported by all widgets. Fields
marked with an asterisk have no equivalent in CSS.

 	Field
 	Type
 	Description

 	background
 	Background
 	To-Do

 	background-clip
 	Origin
 	To-Do

 	background-color
 	Brush
 	To-Do

 	border
 	Border
 	To-Do

 	border-top
 	Border
 	To-Do

 	border-right
 	Border
 	To-Do

 	border-bottom
 	Border
 	To-Do

 	border-left
 	Border
 	To-Do

 	border-color
 	Box Colors
 	To-Do

 	border-top-color
 	Brush
 	To-Do

 	border-right-color
 	Brush
 	To-Do

 	border-bottom-color
 	Brush
 	To-Do

 	border-left-color
 	Brush
 	To-Do

 	border-radius
 	Radius
 	To-Do

 	border-top-left-radius
 	Radius
 	To-Do

 	border-top-right-radius
 	Radius
 	To-Do

 	border-bottom-right-radius
 	Radius
 	To-Do

 	border-bottom-left-radius
 	Radius
 	To-Do

 	border-style
 	Border Style
 	To-Do

 	border-top-style
 	Border Style
 	To-Do

 	border-right-style
 	Border Style
 	To-Do

 	border-bottom-style
 	Border Style
 	To-Do

 	border-left-style
 	Border Style
 	To-Do

 	border-width
 	Box Lengths
 	To-Do

 	border-top-width
 	Length
 	To-Do

 	border-right-width
 	Length
 	To-Do

 	border-bottom-width
 	Length
 	To-Do

 	border-left-width
 	Length
 	To-Do

 	bottom
 	Length
 	To-Do

 	color
 	Brush
 	To-Do

 	font
 	Font
 	To-Do

 	font-family
 	String
 	To-Do

 	font-size
 	Font Size
 	To-Do

 	font-style
 	Font Style
 	To-Do

 	font-weight
 	Font Weight
 	To-Do

 	height
 	Length
 	To-Do

 	icon-size
 	Length
 	To-Do

 	left
 	Length
 	To-Do

 	line-edit-password-character
 	Number
 	To-Do

 	margin
 	Box Lengths
 	To-Do

 	margin-top
 	Length
 	To-Do

 	margin-right
 	Length
 	To-Do

 	margin-bottom
 	Length
 	To-Do

 	margin-left
 	Length
 	To-Do

 	max-height
 	Length
 	To-Do

 	max-width
 	Length
 	To-Do

 	min-height
 	Length
 	To-Do

 	min-width
 	Length
 	To-Do

 	padding
 	Box Lengths
 	To-Do

 	padding-top
 	Length
 	To-Do

 	padding-right
 	Length
 	To-Do

 	padding-bottom
 	Length
 	To-Do

 	padding-left
 	Length
 	To-Do

 	position
 	relative | absolute
 	To-Do

 	right
 	Length
 	To-Do

 	selection-background-color
 	Brush
 	To-Do

 	selection-color
 	Brush
 	To-Do

 	spacing
 	Length
 	To-Do

 	subcontrol-origin
 	Origin
 	To-Do

 	subcontrol-position
 	Alignment
 	To-Do

 	text-align
 	Alignment
 	To-Do

 	text-decoration
 	none
 underline
 overline
 line-through

 Language-Based Tools

Language-Based Tools

Language-based tools are software that operate on programming languages,
including Integrated Development Environments (IDEs) and others.

Many of these tools can be configured to recognise the syntax of a .enaml file,
and thus provide syntax-colouring, indenting support and other features.

Enaml comes bundled with a number of configuration files for common IDEs and
other tools.

BBEdit [https://www.barebones.com/products/bbedit/]

BBEdit is a commercial MacOS IDE from Bare Bones [https://www.barebones.com/].

An Enaml language library for BBEdit is provided in the source at
tools/barebones/

For installation instructions, see the BBEdit Support pages [https://www.barebones.com/support/bbedit/plugin_library.html].

GNU Emacs [https://www.gnu.org/software/emacs/]

GNU Emacs is a popular, cross-platform, open-source IDE.

An Enaml mode for Emacs is provided in the source at tools/emacs.

For installation instructions, see in the source at
tools/emacs/README.rst

TextMate [https://macromates.com/]

TextMate is a commercial MacOS IDE.

An Enaml language definition for TextMate is provided in the source tree at
tools/sublimetext.

For installation instructions, see the TextMate Manual [https://macromates.com/manual/en/language_grammars#language_grammars].

Sublime Text [https://www.sublimetext.com/]

Sublime Text is a cross-platform, commercial IDE.

Sublime Text can also use the TextMate language definition at
tools/sublimetext/Enaml.tmLanguage.

The preferred method to access it is to use the Sublime Package Manager.
Alternatively, the files can be obtained on Github [https://github.com/nucleic/sublimetext-enaml-syntax] and manually used.

For installation instructions, see the Sublime Text manual [http://docs.sublimetext.info/en/latest/extensibility/packages.html#installing-packages].

Visual Studio [https://visualstudio.microsoft.com/]

Visual Studio is a commercial IDE for Windows and MacOs from Microsoft.

Visual Studio can also use the TextMate language definition at
tools/sublimetext/Enaml.tmLanguage.

For installation instructions, see the
Visual Studio manual [https://code.visualstudio.com/docs/extensions/themes-snippets-colorizers].

Alternatively, there is a third-party Visual Studio extension, enaml-vs [https://marketplace.visualstudio.com/items?itemName=mdartiailh.enaml-vs] available
free from the Visual Studio Marketplace, which offers simpler installation of the
same definitions.

Warning

Third-party plugins are not supported by the Enaml team.

PyCharm [https://www.jetbrains.com/pycharm/]

PyCharm is a cross-platform, freemium Python IDE from JetBrains.

PyCharm can also use the TextMate language definition at
tools/sublimetext/Enaml.tmLanguage.

For installation instructions, see the TextMate Bundles support plugin [https://www.jetbrains.com/help/pycharm/2018.1/tutorial-using-textmate-bundles.html]
manual.

Alternatively, there are two third-party PyCharm plugins to add basic syntax
support for Enaml:

	pycharm-enaml-plugin [https://github.com/pberkes/pycharm-enaml-plugin]

	pycharm-enaml-keywords [https://github.com/vahndi/pycharm-enaml-keywords]

Warning

Third-party plugins are not supported by the Enaml team.

Vim [https://www.vim.org/]

Vim is a popular, cross-platform, charityware text editor.

Enaml syntax and indent files are available at tools/vim.

For installation instructions, see in the source at
tools/vim/README.rst

Pygments [http://pygments.org/]

Pygments is an open-source generic syntax highlighter. It is used by
Sphinx [http://www.sphinx-doc.org/] to format code included in project documentation.

An Enaml lexer for Pygments is available at tools/pygments.

To install, change into the ./tools/pygments directory, and run
pip install -e ..

Alternatively, it can be installed directly from PyPi [https://pypi.org/project/pygments-enaml/]: pip install pygments-enaml

Once this is installed, it will be automatically used by Sphinx to format
Enaml code blocks (i.e. code directives [http://docutils.sourceforge.net/docs/ref/rst/directives.html#Code], with enaml as the language
argument.)

 Enaml Workbench Developer Crash Course

Enaml Workbench Developer Crash Course

This document is a short introduction to the Enaml Workbench plugin framework.
It is intended for developers of plugin applications that need to get up and
running with the framework in a short amount of time. The Workbench framework
is not large, and a good developer can be comfortable with it in an afternoon.

This document covers the concepts, terminology, workflow, and the core plugins
and classes of the framework. The accompanying example demonstrates the various
parts of the framework with a simple plugin application which allows the user
to toggle between a handful of sample views.

Concepts

Writing large applications is hard. Writing large UI applications is harder.
Writing large UI applications which can be safetly extended at runtime by
other developers is a recipe for hair loss. There are several difficult issues
which must be addressed when developing such applications, some of the most
notable are:

	Registration
	How does user code get dynamically registered and unregistered at runtime?

	Life Cyle
	When and how should user code be loaded and run? How and when and how
should it be unloaded and stopped?

	Dependencies
	How does the application get started without requiring all user code to
be available at startup? How does the application avoid loading external
dependencies until they are actually required to do work?

	Notifications
	How can various parts of the application be notified when user code is
registered and unregistered?

	User Interfaces
	How can the application be flexible enough to allow user code to add
user interface elements to the window at runtime, without clobbering
or interfering with the existing user interface elements?

	Flexibility
	How can an application be designed in a way where it may be extended
to support future use cases which have not yet been conceived?

	Ease of Use
	How can all of these difficult problems be solved in such a way that
a good developer can be comfortable developing with the application
in an afternoon?

The Enaml Workbench framework attempts to solve these problems by providing
a set of low-level components which can be used to develop high-level plugin
applications. Think of it as a mini-Eclipse framework for Enaml.

Unlike Eclipse however, the Enaml Workbench framework strives to be compact
and efficient. Following the “less is more” mantra, it seeks to provide only
the core low-level features required for generic plugin applications. It is
intended that the core development team for a large application will build
domain specific abstractions on top of the core workbench pieces which will
then used to assemble the final application.

Terminology

Before continuuing with the crash course, the following terminology is
introduced and used throughout the rest of the document.

	Workbench
	The core framework object which manages the registration of plugin
manifests and the creation of plugin objects. It acts as the central
registry and primary communication hub for the various parts of a
plugin application.

	Plugin Manifest
	An object which declares a plugin and its public behavior. It does
not provide an implementation of that behavior.

	Plugin
	An object which can be dynamically loaded and unloaded from a workbench.
It is the implementation of the behavior defined by its plugin manifest.
This term is often overload to also indicate the collection of manifest,
plugin, extension points, and extensions. That is, ‘plugin’ can refer to
the actual plugin instance, or the entire package of related objects
written by the developer.

	Extension Point
	A declaration in a plugin manifest which advertises that other plugins
may contribute functionality to this plugin through extensions. It
defines the interface to which an extension must conform in order to
be useful to the plugin which declares the extension point.

	Extension
	A contribution to the extension point of a plugin. An extension adds
functionality and behavior to an existing application by implementing
the interface required by a given extension point.

Workflow

Using the workbench framework is relatively straightforward and has only
a few conceptual steps.

	Define the classes which implement your application business logic.

	If your application will create a plugin which contribute extensions
to an extension point, define the extension classes and ensure that
they implement the interface required by the extension point. The
extension classes should interact with the business logic classes to
expose their functionality to the rest of the application.

	If your application will create a plugin which defines new extension
points, define a Plugin subclasses which will implement the extension
point behavior by interacting with the extensions contributed to the
extension point by other plugins.

	Create a PluginManifest for each plugin defined by your application.
The manifest will declare the extension points provided by the plugin
as well as the extensions it contributes to other extension points. If
needed, it will supply a factory to create the custom Plugin object.

	Create an instance of Workbench or one of its subclasses.

	Register the plugin manifests required by your application with the
workbench. Only the plugins required for startup need to be registered.
Additional manifest can be added and removed dynamically at runtime.

	Start the application. How this is done is application dependent.

Points 0 - 3 require the most mental effort. The framework provides a few pre-
defined plugins and Workbench subclasses (described later) which make the last
few steps of the process more-or-less trivial.

The important takeaway here is that the application business logic should be
defined first, and then be bundled up as extensions and extension points to
expose that logic to various other parts of the application. This design
pattern forces a strong separation between logical components. And while it
requires a bit more up-front work, it results in better code reuse and a more
maintainable and extensible code base.

Core Classes

This section covers the core classes of the workbench framework.

Workbench

The Workbench class acts as the fundamental registry and manager object for
all the other parts of the plugin framework. As a central hub, it’s usually
possible to access any object of interest in the application by starting with
a reference to the workbench object.

The core Workbench class can be imported from enaml.workbench.api.

The core Workbench class may be used directly, though application developers
will typically create a subclass to register default plugins on startup. A
perfect example of this is the UIWorkbench subclass which registers the
‘enaml.workbench.core’ and ‘enaml.workbench.ui’ plugins when started.

The following methods on a Workbench are of particular interest:

	register
	This method is used to register a PluginManifest instance with the
workbench. This is the one-and-only way to contribute plugins to an
application, whether during initialization or later at runtime.

	unregister
	This method is used to unregister a plugin manifest which was previously
added to the workbench with a call to register. This is the one-and-
only way to remove plugins from the workbench application.

	get_plugin
	This method is used to query for, and lazily create, the plugin object
for a given manifest. The plugin object will be created the first time
this method is called. Future calls will return the cached plugin object.

	get_extension_point
	This method will return the extension point declared by a plugin. The
extension point can be queried for contributed extensions at runtime.

PluginManifest

The PluginManifest class is used to describe a plugin in terms of its
extension points and extensions. It also defines a globally unique
identifier for the plugin along with an optional factory function which
can be used to create the underlying plugin instance when needed.

The PluginManifest class can be imported from enaml.workbench.api.

The PluginManifest class is a declarative class and defines the following
attributes of interest:

	id
	This is a globally unique identifier which identifies both the manifest
and the plugin which will be created for it. It should be a string in
dot-separated form, typically ‘org.pkg.module.name’. It also serves as
the enclosing namespace for the identifiers of its extension points and
extensions. The global uniqueness of this identifier is enforced.

	factory
	A callable which takes no arguments and returns an instance of Plugin.
For most use-cases, this factory can be ignored. The default factory
will create an instance of the default Plugin class which is suitable
for the frequent case of a plugin providing nothing but extensions to
the extension points of other plugins.

Since this class is declarative, children may be defined on it. In particular,
a plugin’s extension points and extensions are defined by declaring children
of type ExtensionPoint and Extension on the plugin manifest.

Plugin

The Plugin class is what does the actual work for implementing the behaviors
defined by extension points. It acts as a sort of manager, ensuring that the
extensions which were contributed to a given extension point are invoked
properly and in accordance with interface defined by the extension point.

Well-behaved plugins also react appropriately when extensions are added or
removed from one of their extension points at runtime.

The Plugin class can be imported from enaml.workbench.api.

It will be uncommon for most end-user developers to ever need to create a
custom plugin class. That job is reserved for core application developers
which actually define how the application can be extended. That said, there
are two methods on a plugin which will be of interest to developers:

	start
	This method will be called by the workbench after it creates the
plugin. The default implementation does nothing and can be ignored
by subclasses which do not need life-cycle behavior.

	stop
	This method will be called by the workbench when the plugin is
removed. The default implementation does nothing and can be
ignored by subclasses which do not need life-cycle behavior.

ExtensionPoint

The ExtensionPoint class is used to publicly declare a point to which
extensions can be contributed to the plugin. Is is declared as the
child of a PluginManifest.

The ExtensionPoint class can be imported from enaml.workbench.api.

The ExtensionPoint class is a declarative class and defines the following
attributes of interest:

	id
	The unique identifier for the extension point. It should be simple
string with no dots. The fully qualified id of the extension point
will be formed by dot-joining the id of the parent plugin manifest
with this id.

Declarative children of an extension point do not have any meaning as
far as the workbench framework is concerned.

Extension

The Extension class is used to pubclicly declare the contribution a plugin
provides to the extension point of another plugin. It is declared as the
child of a PluginManifest.

The Extension class can be imported from enaml.workbench.api.

The Extension class is a declarative class and defines the following
attributes of interest:

	id
	The unique identifier for the extension. It should be simple string
with no dots. The fully qualified id of the extension will be formed
by dot-joining the id of the parent plugin manifest with this id.

	point
	The fully qualified id of the extension point to which the extension
is contributing.

	rank
	An optional integer to rank the extension among other extensions
contributed to the same extension point. The semantics of how the
rank value is used is specified by a given extension point.

	factory
	An optional callable which is used to create the implementation
object for an extension. The semantics of the call signature and
return value are specified by a given extension point.

Declarative children of an Extension are allowed, and their semantic meaning
are defined by a given extension point. For example, the extension point
‘enaml.workbench.core.commands’ allows extension commands to be defined as
declarative children of the extension.

Core Plugin

The section covers the workbench core plugin.

The core plugin is a pre-defined plugin supplied by the workbench framework.
It provides non-ui related functionality that is useful across a wide variety
of applications. It must be explicitly registered with a workbench in order
to be used.

The CoreManifest class can be imported from enaml.workbench.core.api. It
is a declarative enamldef and so must be imported from within an Enaml imports
context.

The id for the core plugin is ‘enaml.workbench.core’ and it declares the
following extension points:

	‘commands’
	Extensions to this point may contribute Command objects which can
be invoked via the invoke_command method of the CorePlugin instance.
Commands can be provided by declaring them as children of the Extension
and/or by declaring a factory function which takes the workbench as an
argument and returns a list of Command instances.

Command

A Command object is used to declare that a plugin can take some action when
invoked by a user. It is declared as the child of an Extension which
contributes to the ‘enaml.workbench.core.commands’ extension point.

The Command class can be imported from enaml.workbench.core.api.

The Command class is a declarative class and defines the following
attributes of interest:

	id
	The globally unique identifier for the command. This should be a
dot-separated string. The global uniqueness is enforced.

	handler
	A callable object which implements the command behavior. It must
accept a single argument which is an instance of ExecutionEvent.

ExecutionEvent

An ExecutionEvent is an object which is passed to a Command handler when
it is invoked by the framework. User code will never directly create an
ExecutionEvent.

An ExecutionEvent has the following attributes of interest:

	command
	The Command object which is being invoked.

	workbench
	A reference to the workbench which owns the command.

	parameters
	A dictionary of user-supplied parameters to the command.

	trigger
	The user object which triggered the command.

UI Plugin

This section covers the workbench ui plugin.

The ui plugin is a pre-defined plugin supplied by the workbench framework.
It provides ui-related functionality which is common to a large swath of
UI applications. It must be explicity registered with a workbench in order
to be used.

The UIManifest class can be imported from enaml.workbench.ui.api. It is
a declarative enamldef and so must be imported from within an Enaml imports
context.

The id of the ui plugin is ‘enaml.workbench.ui’ and it declares the following
extension points:

	‘application_factory’
	An Extension to this point can be used to provide a custom
application object for the workbench. The extension factory should
accept no arguments and return an Application instance. The highest
ranking extension will be chosen to create the application.

	‘window_factory’
	An Extension to this point can be used to provide a custom main
window for the workbench. The extension factory should accept the
workbench as an argument and return a WorkbenchWindow instance. The
highest ranking extension will be chosen to create the window.

	‘branding’
	An Extension to this point can be used to provide a custom window
title and icon to the primary workbench window. A Branding object can
be declared as the child of the extension, or created by the extension
factory function which accepts the workbench as an argument. The
highest ranking extension will be chosen to provide the branding.

	‘actions’
	Extensions to this point can be used to provide menu items and
action items to be added to the primary workbench window menu bar. The
extension can declare child MenuItem and ActionItem instances as well
as provide a factory function which returns a list of the same.

	‘workspaces’
	Extensions to this point can be used to provide workspaces which
can be readily swapped to provide the main content for the workbench
window. The extension factory function should accep the workbench as
an argument and return an instance of Workspace.

	‘autostart’
	Extensions to this point can be used to provide the id of a plugin
which should be started preemptively on application startup. The
extension should declare children of type Autostart. The plugins will
be started in order of extension rank. Warning - abusing this facility
can cause drastic slowdowns in application startup time. Only use it
if you are absolutely sure your plugin must be loaded on startup.

The plugin declares the following extensions:

	‘default_application_factory’
	This contributes to the ‘enaml.workbench.ui.application_factory’
extension point and provides a default instance of a QtApplication.

	‘default_window_factory’
	This contributes to the ‘enaml.workbench.ui.window_factory’ extension
point and provides a default instance of a WorkbenchWindow.

	‘default_commands’
	This contributes to the ‘enaml.workbench.core.commands’ extension point
and provides the default command for the plugin (described later).

The plugin provides the following commands:

	‘enaml.workbench.ui.close_window’
	This command will close the primary application window. It takes
no parameters.

	‘enaml.workbench.ui.close_workspace’
	This command will close the currently active workspace. It takes
no parameters.

	‘enaml.workbench.ui.select_workspace’
	This command will select and activate a new workspace. It takes
a single ‘workspace’ parameter which is the fully qualified id of
the extension point which contributes the workspace of interest.

WorkbenchWindow

The WorkbenchWindow is an enamldef subclass of the Enaml MainWindow widget.
It is used by the ui plugin to bind to the internal ui window model which
drives the runtime dynamism of the window.

The will be cases where a developer wishes to create a custom workbench
window for one reason or another. This can be done subclassing the plain
WorkbenchWindow and writing a plugin which contributes a factory to the
‘enaml.workbench.ui.window_factory’ class.

The WorkbenchWindow class can be imported from enaml.workbench.ui.api.

Branding

The Branding class is a declarative class which can be used to apply a
custom window title and window icon to the primary application window. This
is a declarative class which can be defined as the child of an extension, or
returned from the factory of an extension which contributes to the
‘enaml.workbench.ui.branding’ extension point.

The Branding class can be imported from enaml.workbench.ui.api.

It has the following attributes of interest:

	title
	The string to use as the primary title of the main window.

	icon
	The icon to use for the icon of the main window and taskbar.

MenuItem

The MenuItem class is a declarative class which can be used to declare a
menu in the primary window menu bar.

The MenuItem class can be imported from enaml.workbench.ui.api.

It has the following attributes of interest:

	path
	A “/” separated path to the location of this item in the menu bar.
This path must be unique for the menu bar, and the parent path must
exist in the menu bar. The last token in the path is the id of this
menu item with respect to its siblings. For example, if the path for
the item is ‘/foo/bar/baz’, then ‘/foo/bar’ is the path for the parent
menu, and ‘baz’ is the id of the menu with respect to its siblings.
The parent menu need not be defined by the same extension which
defines the menu. That is, one plugin can contribute a sub-menu to
a menu defined by another plugin.

	group
	The name of the item group defined by the parent menu to which this
menu item should be added. For a top-level menu item, the empty group
is automatically implied.

	before
	The id of the sibling item before which this menu item should appear.
The sibling must exist in the same group as this menu item.

	after
	The id of the sibling item after which this menu item should appear.
This sibling must exist in the same group as this menu item.

	label
	The text to diplay as the label for the menu.

	visible
	Whether or not the menu is visible.

	enabled
	Whether or not the menu is enabled.

A MenuItem can define conceptual groups in which other plugins may contribute
other menu items and action items. A group is defined by declaring a child
ItemGroup object on the menu item. The group will appear on screen in the
order in which they were declared. There is an implicit group with an empty
identifier into which all unclassified items are added. The implicit group
will always appear visually last on the screen.

ItemGroup

The ItemGroup class is a declarative class used to form a logical and
visual group of items in a menu. It is declared as a child of a MenuItem
and provides a concrete advertisement by the author of a MenuItem that it
expects other MenuItem and ActionItem instances to be added to that point
in the Menu.

The ItemGroup class can be imported from enaml.workbench.ui.api.

It has the following attributes of interest:

	id
	The identifier of the group within the menu. It must be unique among
all other group siblings defined for the menu item.

	visible
	Whether or not the items in the group are visible.

	enabled
	Whether or not the items in the group are enabled.

	exclusive
	Whether or not neighboring checkable action items in the group
should behave as exclusive checkable items.

ActionItem

The ActionItem class is used to declare a triggerable item in a menu. It
is declared as a child of a plugin Extension object.

The ActionItem class can be imported from enaml.workbench.ui.api.

It has the following attributes of interest:

	path
	A “/” separated path to the location of this item in the menu bar.
This path must be unique for the menu bar, and the parent path must
exist in the menu bar. The last token in the path is the id of this
action item with respect to its siblings. For example, if the path for
the item is ‘/foo/bar/baz’, then ‘/foo/bar’ is the path for the parent
menu, and ‘baz’ is the id of the action with respect to its siblings.
The parent menu need not be defined by the same extension which
defines the action. That is, one plugin can contribute an action to a
menu defined by another plugin.

	group
	The name of the item group defined by the parent menu to which this
action item should be added.

	before
	The id of the sibling item before which this action item should appear.
The sibling must exist in the same group as this action item.

	after
	The id of the sibling item after which this action item should appear.
This sibling must exist in the same group as this action item.

	command
	The identifier of the Command object which should be invoked when
this action item is triggered by the user.

	parameters
	The dictionary of parameters which should be passed to the command
when it is invoked.

	label
	The text to diplay as the label for the action.

	shortcut
	The keyboard shortcut which should be bound to trigger action item.

	visible
	Whether or not the action is visible.

	enabled
	Whether or not the action is enabled.

	checkable
	Whether or not the action is checkable.

	checked
	Whether or not the action is checked.

	icon
	The icon to display next to the action.

	tool_tip
	The tool tip text to display when the user hovers over the action.

	status_tip
	The text to display in the status bar when the user hovers over the
action.

Workspace

The Workspace class is a declarative class which is used to supply the
central window content for a ui workbench application. It contains the
attributes and method which are necessary for the ui plugin to be able
to dynamically switch workspaces at runtime. The application developer
will typically create a custom workspace class for each one of the views
that will be shown in the workbench.

The Workspace class is declarative to allow the developer to fully
leverage the Enaml language in the course of defining their workspace.
It will typically be declared as the child of any object.

The Workspace class can be imported from enaml.workbench.ui.api.

It has the following attributes of interest:

	window_title
	This is text which will be added to the window title in addition
to the title text which is supplied by a branding extension.

	content
	This is an Enaml Container widget which will be used as the primary
window content. It should be created during the workspace ‘start’
method and will be destroyed by the framework automatically when
the workspace is stopped.

It has the following methods of interest:

	start
	This method is called when the UI plugin starts the workspace. This
can be used to load content or any other resource which should exist
for the life of the workspace.

	stop
	This method is called when the UI plugin closes the workspace. This
should be used to release any resources acquired during the lifetime
of the workspace. The content Container will be destroyed automatically
after this method returns.

Autostart

The Autostart class is a declarative class which is used to supply the
plugin id for a plugin which should be automatically started on application
startup.

The Autostart class can be imported from enaml.workbench.ui.api.

It has the following attributes of interest.

	plugin_id
	This is the id of the plugin to start on application startup. The
manifest for the plugin must be registered before the ui plugin is
started.

UI Workbench

The UIWorkbench class is a simple sublass of Workbench for creating ui
applications. This class will automatically register the pre-defined
‘core’ and ‘ui’ workbench plugins when it is started.

The UIWorkbench class can be imported from enaml.workbench.ui.api.

It has the following methods of interest:

	run
	This method will load the core and ui plugins and start the
main application event loop. This is a blocking call which
will return when the application event loop exits.

 Architecture Reference

Architecture Reference

Under construction.

 Frequently Asked Questions

Frequently Asked Questions

Please consult the Enaml Q&A forum on Google Groups: http://groups.google.com/d/forum/enaml

 Examples

Examples

Tutorial Examples

	“Hello World” tutorial

	Person tutorial

	Employee tutorial

Widgets Examples

	Buttons Example

	Context Menu Example

	Dates Example

	Dock Area Example

	Dock Pane Example

	Drag And Drop Example

	Dual Slider Example

	Field Example

	File Dialog Example

	Flow Area Example

	Focus Traversal Example

	Form Spacing Example

	Form Example

	Group Box Example

	H Group Example

	Image View Example

	Ipython Console Example

	Main Window Example

	Menu Bar Example

	Mdi Area Example

	Mpl Canvas Example

	Notebook Example

	Popup Menu Example

	Popup View Example

	Progress Bar Example

	Scroll Area Example

	Slider Example

	Spin Box Example

	Splitter Example

	Tool Bar Example

	Tool Buttons Example

	V Group Example

	Vtk Canvas Example

	Window Example

	Window Children Example

Layout Examples

Basic

	Align Example

	Align Offset Example

	Grid Example

	Hbox Example

	Hbox Equal Widths Example

	Hbox Spacing Example

	Horizontal Example

	Linear Relations Example

	Vbox Example

	Vertical Example

Advanced

	Button Ring Example

	Factory Func Example

	Find Replace Example

	Fluid Example

	Manual Hbox Example

	Manual Vbox Example

	Mpl Canvas Size Example

	Nested Boxes Example

	Nested Containers Example

	Override Layout Constraints Example

	Centered Grid Example

Stdlib Examples

	Mapped View Example

	Message Box Example

	Task Dialog Example

Dynamic Examples

	Conditional Example

	Fields Example

	Looper Example

	Notebook Pages Example

Aliases Examples

	Chained Attribute Alias Example

	Chained Widget Alias Example

	Simple Attribute Alias Example

	Simple Widget Alias Example

Functions Examples

	Declare Function Example

	Observe Model Signal Example

	Override Function Example

Styling Examples

	Banner Example

	Dock Item Alerts Example

	Gradient Push Button Example

Templates Examples

	Advanced Example

	Basic Example

Applib Examples

	Live Editor Example

Workbench Examples

	Sample Workbench Example

 “Hello World” tutorial

“Hello World” tutorial

Our goal in this tutorial is to show a minimal example of an Enaml user
interface and introduce a few basic concepts. It sets up a minimal GUI to
display a simple message.

Let’s get started with a minimalist “hello world” example. Enaml interfaces
are described in a file with the “.enaml” extension. While the code has some
similarities to Python, Enaml is a separate language.

Here is our minimalist .enaml file describing a message-displaying GUI
(download here):

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
from enaml.widgets.api import Window, Container, Label

enamldef Main(Window):
 attr message = "Hello, world!"
 Container:
 Label:
 text = message

Use the enaml-run utility to run it from the command line with

$ enaml-run hello_world_view.enaml

The resulting GUI looks like this (on Windows 7):

[image: ../_images/tut_hello_world.png]
Let’s take a closer look at the Enaml file.

Enaml Definitions

An Enaml view is made up of a series of component definitions that look a
lot like Python classes. In the first line of code, we are defining a new
component, Main, which derives from Window, a builtin widget in the
Enaml library:

enamldef Main(Window):

With this line of code, we have defined the start of a definition block.

In general, we could call this almost anything we want, as long as it is a
Python-valid name. In this case, however, by giving it the special name Main
we get to run it from the command line with the enaml-run tool.
enaml-run looks for a component named Main or a function named main
in an .enaml file and runs it as a standalone application.

Definition Structure

Inside a definition block, the view is defined in a hierarchical tree of
widgets. As in Python [http://docs.python.org/reference/lexical_analysis.html#indentation] ,
indentation is used to specify code block structure. That is, statements
beginning at a certain indentation level refer to the header line at the next
lower indentation level. So in our simple example, the Container belongs to
Main and the Label belongs to the Container:

enamldef Main(Window):
 attr message = "Hello, world!"
 Container:
 Label:
 text = message

The view is made up of a Window containing a Container which in
turn contains a Label, whose text attribute is set equal to the
message attribute of Main, which has a default value of
"Hello, world!". This default value can be changed by the code which
creates an instance of Main.
(We’ll discuss this in more detail in the next tutorial.)

Just like regular Python objects, the widgets used in an Enaml UI must be
defined and/or imported before they can be used. The widgets used in this
tutorial are imported from enaml.widgets.api.

Using the Enaml view in Python

Now we’ll take a look at how to use the view in Python code. First, we import
Enaml:

import enaml

Then we use enaml.imports() as a context manager [http://docs.python.org/release/2.5.2/ref/context-managers.html] for importing
the Enaml view:

with enaml.imports():
 from hello_world_view import Main

Enaml is an inherently asynchronous toolkit, with a server running an
application which offers UI sessions that a client may view. For this simple
example, we’ll be working with the client and server both running locally and
in the same process.

Next we need to create a toolkit specific application. This is typically the only
toolkit-specific code in an Enaml application:

from enaml.qt.qt_application import QtApplication

app = QtApplication()

Then we create a view object, and call its show method:

view = Main(message="Hello World, from Python!")
view.show()

Finally, we start the event loop:

Start the application event loop
app.start()

[image: ../_images/tut_hello_world_python.png]

 Person tutorial

Person tutorial

This tutorial expands on the “Hello World” Tutorial to
introduce the concepts of reusable component declarations and components from
the standard widget library in Enaml. It sets up a GUI with the name and age
of a person.

Here is the Enaml file (download here):

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
from enaml.widgets.api import Window, Label, Field, Form
from enaml.stdlib.fields import IntField

enamldef PersonForm(Form):
 attr person
 Label:
 text = 'First Name'
 Field:
 text := person.first_name
 Label:
 text = 'Last Name'
 Field:
 text := person.last_name
 Label:
 text = 'Age'
 IntField:
 minimum = 0
 value := person.age

enamldef PersonView(Window):
 attr person
 PersonForm:
 person := parent.person

Here is the Python code (download here):

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
from __future__ import unicode_literals, print_function

from atom.api import Atom, Str, Range, Bool, observe

import enaml
from enaml.qt.qt_application import QtApplication

import sys, os
sys.path.append(os.path.dirname(os.path.abspath(__file__)))

class Person(Atom):
 """ A simple class representing a person object.

 """
 last_name = Str()

 first_name = Str()

 age = Range(low=0)

 debug = Bool(False)

 @observe('age')
 def debug_print(self, change):
 """ Prints out a debug message whenever the person's age changes.

 """
 if self.debug:
 templ = "{first} {last} is {age} years old."
 s = templ.format(
 first=self.first_name, last=self.last_name, age=self.age,
)
 print(s)

def main():
 with enaml.imports():
 from person_view import PersonView

 john = Person(first_name='John', last_name='Doe', age=42)
 john.debug = True

 app = QtApplication()
 view = PersonView(person=john)
 view.show()

 app.start()

if __name__ == '__main__':
 main()

The resulting GUI looks like this (on Windows 7):

[image: ../_images/tut_john_doe.png]

Enaml Imports

This .enaml file begins like the “Hello World” example
with comments, but next we see that we can import other .enaml files in Enaml,
just like we can import .py files.:

from enaml.stdlib.fields import IntField

In this case, we are importing the integer field widget IntField from
Enaml’s standard widget library. This widget
lets us assign an integer to the value attribute of the widget. The
widget automatically converts to and from the text representation of the
integer complete with validation and error checking.

Note that this import points to a widget definition in an .enaml file.
The import statement looks like Python but imports from an .enaml file.

PersonForm Definition Block

Next, there is a component definition block. We define a component, in this
case an entry form, using a component hierarchy definition. With this block of
code, we define a reusable component derived from other components.

enamldef PersonForm(Form):
 attr person
 Label:
 text = 'First Name'
 Field:
 text := person.first_name
 Label:
 text = 'Last Name'
 Field:
 text := person.last_name
 Label:
 text = 'Age'
 IntField:
 minimum = 0
 value := person.age

A component definition block header line begins with enamldef followed by
the name of the component followed by the base component or widget from which
it inherits. A widget defined with enamldef must inherit from a builtin
widget or another enamldef. The header line ends with a colon:

enamldef PersonForm(Form):

Indented under the header line are statements declaring either attributes or
children. attr person declares a person attribute of PersonForm.
Because no default value is specified, this attribute must be supplied by code
which uses the PersonForm.

Built-in Components

Next, we add a series of labels and fields. Form, Label and Field
are all from the library of Enaml built-in widgets.

Form is a built-in container that arranges
alternating child components into two columns. This is typically done in the
way seen here with alternating Label and widget children, though there
are no restrictions on the types of widgets which can be used. In a form with
an odd number of components, the last component spans both columns.

Label is a built-in component for displaying
read-only text.

Field is a built-in widget for entering a text
value. Field is used as the base component for many other components that do
type conversions.

Delegation Operator :=

In the Field code block, we notice a new operator :=. This is the
delegation operator, one of the five special operators in
the Enaml grammar. It sets up a two-way synchronization
between the objects on the left-hand and right-hand sides. That is, changes to
the value of the text field in the GUI widget are applied to the value of
person.first_name, and changes to the value of person.first_name are
displayed in the GUI component.

Standard Library of Derived Components

The IntField component is derived from Field and provides
string-to-integer conversion, validation, and error reporting functions. By
using the IntField component, we add validation to the GUI, as shown in the
example below, where a non-integer value was entered in the age field:

[image: ../_images/tut_john_doe_error.png]

PersonView Definitions Block

Now, with another enamldef block, we can make a view available using our
previously declared PersonForm. If we wanted to, we could add PersonForm
many times over in this view or any other view, but for now we’ll keep it
simple. Note that we will pass a person object to the view when we create
an instance of it.

enamldef PersonView(Window):
 attr person
 PersonForm:
 person = parent.person

Now, on to the Python code.

Atom Object

Enaml is designed to be model framework independent and ships with a formal
API for attaching to any Python model framework which provides notification of
state change. However, Enaml itself is built with Atom and will work
with Atom objects [https://github.com/nucleic/atom/] out of the
box. The important thing to note is that the Person attribute names match
the attribute names of the person object used by the PersonForm in the
.enaml file.

class Person(Atom):
 """ A simple class representing a person object.

 """
 last_name = Str()

 first_name = Str()

 age = Range(low=0)

 debug = Bool(False)

 @observe('age')
 def debug_print(self, change):
 """ Prints out a debug message whenever the person's age changes.

 """
 if self.debug:
 templ = "{first} {last} is {age} years old."
 s = templ.format(
 first=self.first_name, last=self.last_name, age=self.age,
)
 print s

Note that our Person class is designed to print out the name and age of the
person when the age attribute changes.

Hooking up an Enaml View to an Atom Object

In the code block for launching the script from the command line, we create a
Person object and create an application which serves it using the
PersonView for the GUI:

if __name__ == '__main__':
 with enaml.imports():
 from person_view import PersonView

 john = Person(first_name='John', last_name='Doe', age=42)
 john.debug = True

 app = QtApplication()
 view = PersonView(person=john)
 view.show()

 app.start()

Running it from the command line, we see

$ python person.py

[image: ../_images/tut_john_doe.png]
We can then make a change in the GUI and see:

John Doe Jr. is 22 years old.

[image: ../_images/tut_john_doe_jr.png]

 Employee tutorial

Employee tutorial

This tutorial shows how we can build more complex and dynamic user interfaces
based on Enaml. It introduces the concepts of constraints and validators. It
sets up a GUI to edit employee details.

Here is the Enaml file (download here):

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
from __future__ import print_function
from enaml.layout.api import vertical, horizontal, align, spacer, vbox
from enaml.widgets.api import (
 Window, Label, Field, Form, DateSelector, CheckBox, GroupBox, Container,
 PushButton
)

from phone_validator import PhoneNumberValidator

enamldef EmployeeForm(Form):
 attr employee
 attr show_employer: bool = True
 Label:
 text = "First name:"
 Field:
 text := employee.first_name
 Label:
 text = "Last name:"
 Field:
 text := employee.last_name
 Label:
 text = "Home phone:"
 Field:
 validator = PhoneNumberValidator()
 text << '(%s) %s-%s' % employee.phone
 text ::
 match = validator.proper.match(text)
 if match:
 area = match.group(1)
 prefix = match.group(2)
 suffix = match.group(3)
 employee.phone = tuple(map(int, (area, prefix, suffix)))
 Label:
 text = 'Date of Birth:'
 DateSelector:
 date := employee.dob
 Label:
 text = 'Age:'
 Label:
 text << str(employee.age)
 Label:
 text = 'Password:'
 Field:
 echo_mode << 'password' if not pw_cb.checked else 'normal'
 text :: print('Password:', text)
 Label:
 text = 'Show Password:'
 CheckBox: pw_cb:
 checked = False
 Label:
 pass
 PushButton: btn:
 checked := show_employer
 checkable = True
 text << ('Hide' if show_employer else 'Show') + ' Employer Details'

enamldef EmployerForm(Form):
 attr employer
 Label:
 text = "Company:"
 Field:
 text << employer.company_name
 enabled << en_cb.checked
 Label:
 text = "Reporting Manager:"
 Field:
 text << "%s %s" % (employer.first_name, employer.last_name)
 enabled << en_cb.checked
 Label:
 text = "Allow Editing:"
 CheckBox: en_cb:
 checked = True

def gen_constraints(top_box, btm_box, btm_vis):
 if not btm_vis:
 return [vbox(top_box)]
 top_form = top_box.form
 btm_form = btm_box.form
 return [vbox(top_box, btm_box), align('midline', top_form, btm_form)]

enamldef EmployeeView(Window): main:
 attr employee
 title << "Employee: %s, %s" % (employee.last_name, employee.first_name)
 Container:
 constraints << gen_constraints(top_box, btm_box, btm_box.visible)
 GroupBox: top_box:
 alias form: top_form
 share_layout = True
 title = "Personal Details"
 EmployeeForm: top_form:
 share_layout = True
 # We access the employee object through the identifier
 # 'main' here, because the EmployeeForm also has an
 # 'employee' attribute declared, and that would be
 # found first.
 employee = main.employee
 GroupBox: btm_box:
 alias form: btm_form
 share_layout = True
 title = "Employer Details"
 visible << top_form.show_employer
 EmployerForm: btm_form:
 share_layout = True
 employer << employee.boss

Here is the Python code (download here):

--
Copyright (c) 2013-2023, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
--
from __future__ import print_function

import datetime

from atom.api import Atom, Str, Range, Bool, Value, Int, Tuple, observe
import enaml
from enaml.qt.qt_application import QtApplication

import sys, os

sys.path.append(os.path.dirname(os.path.abspath(__file__)))

class Person(Atom):
 """A simple class representing a person object."""

 last_name = Str()

 first_name = Str()

 age = Range(low=0)

 dob = Value(datetime.date(1970, 1, 1))

 debug = Bool(False)

 @observe("age")
 def debug_print(self, change):
 """Prints out a debug message whenever the person's age changes."""
 if self.debug:
 templ = "{first} {last} is {age} years old."
 s = templ.format(
 first=self.first_name,
 last=self.last_name,
 age=self.age,
)
 print(s)

 @observe("dob")
 def update_age(self, change):
 """Update the person's age whenever their date of birth changes"""
 # grab the current date time
 now = datetime.datetime.now()
 # estimate the person's age within one year accuracy
 age = now.year - self.dob.year
 # check to see if the current date is before their birthday and
 # subtract a year from their age if it is
 if (
 now.month == self.dob.month and now.day < self.dob.day
) or now.month < self.dob.month:
 age -= 1
 # set the persons age
 self.age = age

class Employer(Person):
 """An employer is a person who runs a company."""

 # The name of the company
 company_name = Str()

class Employee(Person):
 """An employee is person with a boss and a phone number."""

 # The employee's boss
 boss = Value(Employer)

 # The employee's phone number as a tuple of 3 ints
 phone = Tuple(Int())

 # This method will be called automatically by atom when the
 # employee's phone number changes
 def _observe_phone(self, val):
 print("received new phone number for %s: %s" % (self.first_name, val))

def main():
 # Create an employee with a boss
 boss_john = Employer(
 first_name="John",
 last_name="Paw",
 company_name="Packrat's Cats",
)
 employee_mary = Employee(
 first_name="Mary",
 last_name="Sue",
 boss=boss_john,
 phone=(555, 555, 5555),
)

 # Import our Enaml EmployeeView
 with enaml.imports():
 from employee_view import EmployeeView

 app = QtApplication()
 # Create a view and show it.
 view = EmployeeView(employee=employee_mary)
 view.show()

 app.start()

if __name__ == "__main__":
 main()

Here is the Python code for the phone number validator (download here):

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
from __future__ import unicode_literals

import re

from enaml.validator import Validator

class PhoneNumberValidator(Validator):
 """ A really dumb phone number validator.

 """
 all_digits = re.compile(r'[0-9]{10}$')

 dashes = re.compile(r'([0-9]{3})\-([0-9]{3})\-([0-9]{4})$')

 proper = re.compile(r'\(([0-9]{3})\)\ ([0-9]{3})\-([0-9]{4})$')

 def validate(self, text):
 """ Validate the input text.

 The text must be in of the form: (555) 555-5555 in order to
 pass the standard validation. The fixup method will convert
 some alternative forms into a correct format.

 """
 return bool(self.proper.match(text))

 def fixup(self, text):
 """ Attempt to convert the given text into the proper format.

 This method is called by the backend when the current text is
 not valid, but can maybe be *made* to be valid by this method.
 The returned text is re-validated to test for viability.

 """
 match = self.dashes.match(text)
 if match:
 area = match.group(1)
 prefix = match.group(2)
 suffix = match.group(3)
 return '(%s) %s-%s' % (area, prefix, suffix)
 match = self.all_digits.match(text)
 if match:
 area = text[:3]
 prefix = text[3:6]
 suffix = text[6:10]
 return '(%s) %s-%s' % (area, prefix, suffix)
 return text

EmployeeForm Definition block

This block summarizes most of the concepts seen in the previous tutorial. It
creates a new enamldef based on the Form
widget. Two attributes are exposed in the widget: an employee attribute and
a show_employer boolean value that defaults to True. The form itself contains
a set of Label widgets with associated
Field widgets.

Using validation on fields

The "Home phone:" field must be validated to make sure the user can’t insert
a phone number that is not valid. The user interface must also signal the user
when the current entry is invalid.

A PhoneNumberValidator class implements the validate(...) method of the
Validator abstract class. If the
validation succeeds the returned value of the validate call is standardized
formatted text.

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
from __future__ import unicode_literals

import re

from enaml.validator import Validator

class PhoneNumberValidator(Validator):
 """ A really dumb phone number validator.

 """
 all_digits = re.compile(r'[0-9]{10}$')

 dashes = re.compile(r'([0-9]{3})\-([0-9]{3})\-([0-9]{4})$')

 proper = re.compile(r'\(([0-9]{3})\)\ ([0-9]{3})\-([0-9]{4})$')

 def validate(self, text):
 """ Validate the input text.

 The text must be in of the form: (555) 555-5555 in order to
 pass the standard validation. The fixup method will convert
 some alternative forms into a correct format.

 """
 return bool(self.proper.match(text))

 def fixup(self, text):
 """ Attempt to convert the given text into the proper format.

 This method is called by the backend when the current text is
 not valid, but can maybe be *made* to be valid by this method.
 The returned text is re-validated to test for viability.

 """
 match = self.dashes.match(text)
 if match:
 area = match.group(1)
 prefix = match.group(2)
 suffix = match.group(3)
 return '(%s) %s-%s' % (area, prefix, suffix)
 match = self.all_digits.match(text)
 if match:
 area = text[:3]
 prefix = text[3:6]
 suffix = text[6:10]
 return '(%s) %s-%s' % (area, prefix, suffix)
 return text

In the Field definition, every time the text is updated with a properly
validated entry, the employee phone attribute is updated.

Field:
 validator = PhoneNumberValidator()
 text << '(%s) %s-%s' % employee.phone
 text ::
 match = validator.proper.match(text)
 if match:
 area = match.group(1)
 prefix = match.group(2)
 suffix = match.group(3)
 employee.phone = tuple(map(int, (area, prefix, suffix)))

Dynamic interaction with widgets

The widget attributes all support the special Enaml operators. One can thus
assign the result of arbitrary Python code to interact with the status of the
widget:

Label:
 text = 'Password:'
 Field:
 echo_mode << 'password' if not pw_cb.checked else 'normal'
 text :: print 'Password:', text
 Label:
 text = 'Show Password:'
 CheckBox: pw_cb:
 checked = False

In this example, the user can activate or deactivate the echo_mode of the
password Field based on the state of another widget, the password CheckBox.
The user can refer to the password CheckBox
using the id of the widget.

Visibility is controled with the visible attribute of a widget. In the
EmployeeMainView, the btm_box visibility is connected to the
top_form.show_employer attribute. Enaml will take care of the related
relayout issues. See the constraints section for more information.

The very same pattern is used in the EmployerForm to enable or disable a
group of Field widgets baesd on a CheckBox.

Customizing your layout

Once you have created the components of your main view, you can assemble them
using the differeent containers:

	Container,

	Form,

	GroupBox,

Those widgets take care of aranging the layout of the child widgets using a set
of constraints. In this tutorial, the only one that defines constraints is the
outer container:

Container:
 constraints << [
 vertical(
 top, top_box, btm_box.when(btm_box.visible), spacer, bottom
),
 horizontal(left, spacer.flex(), top_box, spacer.flex(), right),
 horizontal(left, spacer.flex(), btm_box, spacer.flex(), right),
 align('midline', top_form, btm_form)
]

[image: ../_images/tut_employee_layout.png]
The constraints attribute of the Container
is populated with a list of constraints. The user expresses how he wants the
layout to be aranged:

	a vertical constraint on the widgets named by id’s.

	two horizontal constraints on the widgets with spacers

	a special constraint on the two forms that aligns their midline, the line
between the two columns of the form. Note that we refer to the id’s of the
forms and not the ones of the GroupBox. GroupBoxes do not have a
midline attribute.

Using spacer, you can add empty space between widgets. This space could
either be fixed space or flexible when using spacer.flex(). In this case,
the spacer will expose a weaker preference for being the fixed value. The
following set of constraints will make the first form compressed horizontally
by setting the target fixed size of the spacer to 50 pixels:

Container:
 constraints << [
 vertical(
 top, top_box, btm_box.when(btm_box.visible), spacer, bottom
),
 horizontal(left, spacer(50).flex(), top_box, spacer(50).flex(), right),
 horizontal(left, spacer.flex(), btm_box, spacer.flex(), right),
 align('midline', top_form, btm_form)
]

Specialized containers can expose particular ways of managing their layout. The
Form exposes a midline attribute that can be
used to align the midline of different forms together. If it was not activated,
the layout would have been:

[image: ../_images/tut_employee_layout_no_midline.png]

Tweaking the layout

Enaml provides many different ways of tweaking the constraints to make sure the
layout engine gives you exactly what you want.

A user can give a weight to each constraint. Valid weights are: 'weak',
'medium', 'strong' and 'ignore'. If the user wants to make the width
of the container equal to 233 pixels but with some latitude, he could add the
following constraint:

Container:
 constraints << [
 vertical(
 top, top_box, btm_box.when(btm_box.visible), spacer, bottom
),
 horizontal(left, spacer.flex(), top_box, spacer.flex(), right),
 horizontal(left, spacer.flex(), btm_box, spacer.flex(), right),
 align('midline', top_form, btm_form),
 (width == 233) | 'weak'
]

The Container exposes some content related
attributes to the constraints system: width, height, left, right,
bottom, top, v_center and h_center. They can be used as shown
in the previous example.

Depending on the flexiblity you need, you might want to use some of the other
layout function like hbox or vbox. You could have created a layout
pretty close to this one with the following constraints:

Container:
 constraints = [
 vbox(top_box, btm_box.when(btm_box.visible)),
 align('midline', top_form, btm_form)
]

The advantage of using hbox and vbox is that you can nest them. The
vertical and horizontal functions cannot be nested.

The set of constraints can be nested by using the hbox, vbox or by
providing constraints of containers that belongs to the outer container. The
GroupBox provides some internal constraints
regarding its size to allow the title to be properly displayed. A
Form automatically lays out the widgets in two
columns. If the user wanted to have an EmployerForm laid out in two horizontal
rows in place of two columns, he could have edited the EmployerForm with the
following set of changes:

	update the base class to be a Container instead of a Form

	provide ids for each of the child widgets

	provide a list of constraints for the desired layout

	remove the alignment constraint in the main container

enamldef EmployerForm(Container):
 attr employer
 constraints = [
 vbox(
 hbox(cmp_lbl, mng_lbl, edit_lbl),
 hbox(cmp_fld, mng_fld, en_cb),
),
 cmp_lbl.width == cmp_fld.width,
 mng_lbl.width == mng_fld.width,
 edit_lbl.width == en_cb.width,
]
 Label: cmp_lbl:
 text = "Company:"
 Field: cmp_fld:
 text << employer.company_name
 enabled << en_cb.checked
 Label: mng_lbl:
 text = "Reporting Manager:"
 Field: mng_fld:
 text << "%s %s" % (employer.first_name, employer.last_name)
 enabled << en_cb.checked
 Label: edit_lbl:
 text = "Allow Editing:"
 CheckBox: en_cb:
 checked = True

[image: ../_images/tut_employee_layout_nested_container.png]

 Buttons Example

Buttons Example

An example of the various button widgets in Enaml.

This example shows the usage of the PushButton, CheckBox, and
RadioButton widgets.

The intent of this example is to demonstrate the use of the button
widgets. See the other examples for explanations of layout and other
language features.

Tip

To see this example in action, download it from
buttons
and run:

$ enaml-run buttons.enaml

Screenshot

[image: ../_images/ex_buttons.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of the various button widgets in Enaml.

This example shows the usage of the `PushButton`, `CheckBox`, and
`RadioButton` widgets.

The intent of this example is to demonstrate the use of the button
widgets. See the other examples for explanations of layout and other
language features.

<< autodoc-me >>
"""
from __future__ import print_function
from enaml.widgets.api import (
 Window, Container, PushButton, CheckBox, RadioButton
)

enamldef Main(Window):
 Container:
 PushButton:
 text = 'Push Me'
 clicked :: print('I was clicked!')
 PushButton:
 # Note: checkable push buttons are only supported on Qt
 text = 'Toggle Me'
 checkable = True
 toggled :: print('I was toggled')
 CheckBox:
 text = 'Check One'
 clicked :: print('Check One clicked')
 CheckBox:
 text = 'Check Two'
 toggled :: print('Check Two toggled')
 RadioButton:
 text = 'Radio One'
 clicked :: print('Radio One clicked')
 RadioButton:
 text = 'Radio Two'
 toggled :: print('Radio Two toggled')
 Container:
 # Note: RadioButton widgets are exclusive amongst siblings
 RadioButton:
 text = 'Radio One b'
 clicked :: print('Radio One b clicked')
 RadioButton:
 text = 'Radio Two b'
 toggled :: print('Radio Two b toggled')

 Context Menu Example

Context Menu Example

An example of using the Menu widget as a context menu.

Tip

To see this example in action, download it from
context_menu
and run:

$ enaml-run context_menu.enaml

Screenshot

[image: ../_images/ex_context_menu.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of using the `Menu` widget as a context menu.

<< autodoc-me >>
"""
from __future__ import print_function
from enaml.widgets.api import Window, Container, Field, Menu, Action

enamldef SampleAction(Action):
 text = '%s action %d' % (parent.title, parent.children.index(self))
 triggered :: print(text)

enamldef SampleMenu(Menu):
 SampleAction: pass
 SampleAction: pass
 SampleAction: pass

enamldef Main(Window):
 Container:
 Field:
 text = 'foo'
 Field:
 text = 'bar'
 SampleMenu:
 title = 'bar'
 context_menu = True
 Field:
 text = 'baz'
 SampleMenu:
 title = 'baz'
 context_menu = True

 Dates Example

Dates Example

Example demonstrating a number of date-related widgets.

Widgets include: datetime_selector, date_selector, time_selector and
calendar.

Asks the user some date-related questions, and gives a glib assessment of
their personality.

Tip

To see this example in action, download it from
dates
and run:

$ enaml-run dates.enaml

Screenshot

[image: ../_images/ex_dates.png]

Example Enaml Code

#--
Copyright (c) 2018, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" Example demonstrating a number of date-related widgets.

Widgets include: `datetime_selector`, `date_selector`, `time_selector` and
`calendar`.

Asks the user some date-related questions, and gives a glib assessment of
their personality.

<< autodoc-me >>
"""

Rename to avoid name clash with attributes
from datetime import (
 time as python_time,
 datetime as python_datetime,
 date as python_date,
 timedelta)

from enaml.layout.api import vbox
from enaml.widgets.api import (
 Window, Container, GroupBox, Form, DateSelector, TimeSelector,
 DatetimeSelector, Label, Field, PushButton, Calendar)

Some functions to help assess the user.

def is_morning_person(time):
 return time.hour < 8

def is_leo(date):
 return (
 (date.month == 7 and date.day >= 23)
 or (date.month == 8 and date.day <= 22)
)

def is_recent_peak(datetime):
 return (python_datetime.now() - datetime) < timedelta(days=28)

def is_recent_backup(date):
 return (python_date.today() - date) < timedelta(days=3)

enamldef Main(Window): window:
 title = 'Personality Survey'

 attr wake_up_time: python_time
 attr birthday: python_date
 attr best_moment: python_datetime
 attr last_backup: python_date

 Container:
 constraints = [
 vbox(questions, results)
]
 GroupBox: questions:
 title = "Questions"
 constraints = [
 vbox(form, cal)
]

 Form: form:
 Label:
 text = "When do you like to wake up?"
 TimeSelector:
 time >> wake_up_time
 Label:
 text = "When's your birthday?"
 DateSelector:
 date >> birthday
 minimum = python_date.today() - timedelta(days=125*365)
 maximum = python_date.today() - timedelta(days=5*365)
 Label:
 text = "When was the best moment of your life?"
 DatetimeSelector:
 datetime >> best_moment
 maximum = python_datetime.now()
 Label:
 text = "When did you last backup your data?"
 Calendar: cal:
 date >> last_backup
 maximum = python_date.today()

 GroupBox: results:
 title = "Survey Results"
 Label:
 text <<
 if wake_up_time is None:
 return ""
 if is_morning_person(wake_up_time):
 return "You are a morning person"
 return "You are a night owl"
 Label:
 text <<
 if birthday is None:
 return ""
 if is_leo(birthday):
 return "You are a Leo!"
 return "You don't believe in astrology."
 Label:
 text <<
 if best_moment is None:
 return ""
 if is_recent_peak(best_moment):
 return "Congratulations! You are at your peak."
 return "You are past your peak."
 Label:
 text <<
 if last_backup is None:
 return ""
 if is_recent_backup(last_backup):
 return "You are a stickler."
 return "You are careless."

 Dock Area Example

Dock Area Example

This example demonstrates the use of the advanced DockArea widget.

The DockArea widget provides a canvas into which DockItems can be docked
and undocked at will. The layout configuration of the area can be saved
and restored using a layout object which can be easily pickled.

Tip

To see this example in action, download it from
dock_area
and run:

$ enaml-run dock_area.enaml

Screenshot

[image: ../_images/ex_dock_area.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" This example demonstrates the use of the advanced DockArea widget.

The DockArea widget provides a canvas into which DockItems can be docked
and undocked at will. The layout configuration of the area can be saved
and restored using a layout object which can be easily pickled.

<< autodoc-me >>
"""
import pickle

from atom.api import Atom, ContainerList, Str

from enaml.layout.api import (
 HSplitLayout, VSplitLayout, TabLayout, InsertItem, hbox, vbox, spacer
)
from enaml.stdlib.dock_area_styles import available_styles
from enaml.stdlib.message_box import question
from enaml.widgets.api import (
 Window, Container, DockArea, DockItem, PushButton, Field, Html, Slider,
 ObjectCombo, CheckBox, MultilineField
)

def cap_case(name):
 return ' '.join(s.capitalize() for s in name.split('-'))

def confirm_close(window, event):
 button = question(
 window, 'Dock item closing', 'Are you sure you want to close this dock item?'
)
 if button and button.action == 'accept':
 event.accept()
 else:
 event.ignore()

class LineCollector(Atom):
 """ A simple class used to generate event logging text.

 """
 #: The header to use as the first lines of the text.
 HEADER = '# Item Event Type \n'\
 '-----------------------------------'

 #: The output text of the collector; updated when data changes.
 text = Str(HEADER)

 #: The data for the collector. This is a list of 2-tuples of
 #: the form (str, DockItemEvent.Type).
 data = ContainerList()

 def _observe_data(self, change):
 self.update_text()

 def update_text(self):
 """ Regenerate the output text from the current data.

 """
 parts = []
 count = len(self.data)
 for index, (evt_type, name) in enumerate(reversed(self.data)):
 parts.append((count - index, evt_type, name))
 lines = [self.HEADER]
 for item in parts:
 num, name, enum = item
 line = '{0!s: <4}{1: <9}{2: <19}'.format(num, name, enum.name)
 lines.append(line)
 self.text = '\n'.join(lines)

enamldef MyDockArea(DockArea):
 layout = HSplitLayout(
 VSplitLayout(
 HSplitLayout(
 VSplitLayout('item_1', 'item_3'),
 'item_4',
),
 'logger',
),
 VSplitLayout(
 TabLayout('item_6', 'item_7', 'item_8', 'item_9'),
 'item_5',
 'item_2',
),
)
 DockItem:
 name = 'item_1'
 title = 'Item 1'
 Container:
 Field: pass
 Field: pass
 Field: pass
 closing ::
 confirm_close(self, change['value'])
 DockItem:
 name = 'item_2'
 title = 'Item 2'
 Container:
 PushButton: text = 'foo'
 PushButton: text = 'bar'
 PushButton: text = 'baz'
 DockItem:
 name = 'item_3'
 title = 'Item 3'
 Container:
 Html: source = '<h1><center>Hello World!</center></h1>'
 DockItem:
 name = 'item_4'
 title = 'Item 4'
 Container:
 Html: source = '<h1><center>Hello Enaml!</center></h1>'
 DockItem:
 name = 'item_5'
 title = 'Item 5'
 Container:
 Slider: pass
 Slider: pass
 Slider: pass
 DockItem:
 name = 'item_6'
 title = 'Item 6'
 Container:
 Html: source = '<h1><center>Guten Tag!</center></h1>'
 DockItem:
 name = 'item_7'
 title = 'Item 7'
 Container:
 Field: pass
 Field: pass
 Field: pass
 Field: pass
 DockItem:
 name = 'item_8'
 title = 'Item 8'
 Container:
 PushButton: text = 'spam'
 PushButton: text = 'ham'
 PushButton: text = 'green'
 PushButton: text = 'eggs'
 DockItem:
 name = 'item_9'
 title = 'Item 9'
 Container:
 Html: source = '<h1><center>Bonjour!</center></h1>'
 DockItem:
 name = 'logger'
 title = 'Logger'
 closable = False
 Container:
 MultilineField:
 attr collector = LineCollector()
 name = 'line-collector'
 text << collector.text
 font = '9pt Courier'
 read_only = True

enamldef MyItem(DockItem): owner:
 Container:
 Field: text = owner.name
 Field: text = owner.name
 Field: text = owner.name
 Field: text = owner.name

enamldef Main(Window):
 Container:
 attr stored = None
 padding = (0, 0, 0, 10)
 constraints = [
 hbox(
 vbox(10, save_b, restore_b, add_b, style_c, c_box, spacer),
 area,
)
]
 PushButton: save_b:
 text = 'Save Layout'
 clicked ::
 layout = area.save_layout()
 parent.stored = pickle.dumps(layout, -1)
 PushButton: restore_b:
 text = 'Restore Layout'
 enabled << stored is not None
 clicked ::
 layout = pickle.loads(stored)
 with area.suppress_dock_events():
 area.apply_layout(layout)
 PushButton: add_b:
 text = 'Add Items'
 clicked ::
 for _ in range(3):
 n = (len(area.children) + 1)
 name = 'item_%d' % n
 title = 'Item %d' % n
 item = MyItem(area, name=name, title=title)
 op = InsertItem(item=name, target='item_1')
 area.update_layout(op)
 ObjectCombo: style_c:
 items = available_styles()
 to_string = cap_case
 selected = 'vs-2010'
 CheckBox: c_box:
 text = 'Enable Dock Events'
 checked := area.dock_events_enabled
 MyDockArea: area:
 style << style_c.selected
 dock_event ::
 event = change['value']
 field = area.find('line-collector')
 field.collector.data.append((event.name, event.type))

 Dock Pane Example

Dock Pane Example

An example of the DockPane widget.

This example demonstrates the use of the DockPane widget. A DockPane
can have at most one child, which must be a ‘Container` widget. The
sizing of the DockPane is largely determined by the size constraints
of the child Container. A DockPane must be used as the child of
a MainWindow. There are several attribute on a DockPane which allow
the developer to control the behavior of the DockPane.

Implementation Notes:

The docking facilities in Wx are very weak. Due to various technical
limitations, the sizing of DockPane widgets in Wx is not nearly as
good as it is on Qt. The cost of using a DockPane in Wx is also
much higher than in Qt due to Wx’s horribly inefficient docking
implementation. If docking is required for a particular application,
strongly prefer the Qt backend over Wx (this is generally a good
life-rule).

Tip

To see this example in action, download it from
dock_pane
and run:

$ enaml-run dock_pane.enaml

Screenshot

[image: ../_images/ex_dock_pane.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of the `DockPane` widget.

This example demonstrates the use of the `DockPane` widget. A `DockPane`
can have at most one child, which must be a 'Container` widget. The
sizing of the `DockPane` is largely determined by the size constraints
of the child `Container`. A `DockPane` must be used as the child of
a `MainWindow`. There are several attribute on a `DockPane` which allow
the developer to control the behavior of the `DockPane`.

Implementation Notes:

 The docking facilities in Wx are very weak. Due to various technical
 limitations, the sizing of `DockPane` widgets in Wx is not nearly as
 good as it is on Qt. The cost of using a `DockPane` in Wx is also
 much higher than in Qt due to Wx's horribly inefficient docking
 implementation. If docking is required for a particular application,
 strongly prefer the Qt backend over Wx (this is generally a good
 life-rule).

<< autodoc-me >>
"""
from enaml.widgets.api import (
 MainWindow, DockPane, Container, PushButton, Html,
)

enamldef Main(MainWindow):
 DockPane:
 title << 'Dock Area %s | %s' % (dock_area, 'floating' if floating else 'docked')
 Container:
 PushButton:
 text = 'Foo'
 PushButton:
 text = 'Bar'
 PushButton:
 text = 'Baz'
 Container:
 Html:
 source = '<h1><center>Hello World!</center></h1>'

 Drag And Drop Example

Drag And Drop Example

An example of the drag and drop functionality.

In addition to the source widgets in this example, the drop target can
accept data from other processes that have draggable data, such as text
from a web page. The source drag data can also be dropped onto other
processes which support the ‘text/plain’ mime type used in this example.

The background color of the labels will update to indicate whether the
drop target accepted or rejected the proposed drop action.

If a widget has the DragEnabled Feature flag enabled, the following
declarative functions are available:

	drag_start
	The start of the drag operation. Returns a DragData object.

	drag_end
	The end of the drag operation. Indicates the result of the drop.

If a widget has the DropEnabled Feature flag enabled, the following
declarative functions are available:

	drag_enter
	Called when a drag operation enters the widget bounds. The event
must be accepted in order to receive further drag drop events.

	drag_move
	Called when a drag operation moves within the widget bounds. This
is normally not implemented, but it can be useful is certain cases.

	drag_leave
	Called when a drag operation leaves the widget bounds.

	drop
	Called when the drag data is dropped on the widget. The event
can be ignored to indicated to the drag source that the event
was not accepted. Set the drop action to DropAction.Ignore for
that case. By default, the event is accepted.

Tip

To see this example in action, download it from
drag_and_drop
and run:

$ enaml-run drag_and_drop.enaml

Screenshot

[image: ../_images/ex_drag_and_drop.png]

Example Enaml Code

#--
Copyright (c) 2014, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of the drag and drop functionality.

In addition to the source widgets in this example, the drop target can
accept data from other processes that have draggable data, such as text
from a web page. The source drag data can also be dropped onto other
processes which support the 'text/plain' mime type used in this example.

The background color of the labels will update to indicate whether the
drop target accepted or rejected the proposed drop action.

If a widget has the `DragEnabled` Feature flag enabled, the following
declarative functions are available:

`drag_start`
 The start of the drag operation. Returns a DragData object.

`drag_end`
 The end of the drag operation. Indicates the result of the drop.

If a widget has the `DropEnabled` Feature flag enabled, the following
declarative functions are available:

`drag_enter`
 Called when a drag operation enters the widget bounds. The event
 must be accepted in order to receive further drag drop events.

`drag_move`
 Called when a drag operation moves within the widget bounds. This
 is normally not implemented, but it can be useful is certain cases.

`drag_leave`
 Called when a drag operation leaves the widget bounds.

`drop`
 Called when the drag data is dropped on the widget. The event
 can be ignored to indicated to the drag source that the event
 was not accepted. Set the drop action to DropAction.Ignore for
 that case. By default, the event is accepted.

<< autodoc-me >>
"""
from enaml.drag_drop import DragData, DropAction
from enaml.layout.api import hbox, vbox, align, spacer
from enaml.styling import StyleSheet, Style, Setter
from enaml.widgets.api import Window, Container, Label, Feature, MultilineField

def create_drag_data(data):
 drag = DragData()
 drag.supported_actions = DropAction.Copy
 drag.mime_data.set_data('text/plain', data)
 return drag

enamldef DragLabel(Label):
 attr data: bytes
 attr success = False
 style_class << 'success' if success else 'fail'
 features = Feature.DragEnabled
 drag_start => ():
 return create_drag_data(data)
 drag_end => (drag_data, result):
 self.success = result == DropAction.Copy

enamldef DropField(MultilineField):
 features = Feature.DropEnabled
 drag_enter => (event):
 if event.mime_data().has_format('text/plain'):
 event.accept_proposed_action()
 drop => (event):
 self.text = event.mime_data().data('text/plain').decode('utf-8')

enamldef ExampleStyleSheet(StyleSheet):
 Style:
 style_class = 'success'
 Setter:
 field = 'background-color'
 value = '#DDFFDD'
 Style:
 style_class = 'fail'
 Setter:
 field = 'background-color'
 value = '#FFDDDD'

enamldef Main(Window):
 ExampleStyleSheet:
 pass
 Container:
 constraints = [
 hbox(vbox(lbl1, lbl2), target),
]
 DragLabel: lbl1:
 text = 'Drag Me 1'
 data = b'small\ndata'
 DragLabel: lbl2:
 text = 'Drag Me 2'
 data = b'\n'.join([bytes(str(i), 'utf-8') for i in range(100)])
 DropField: target:
 hug_width = 'strong'
 read_only = True

 Dual Slider Example

Dual Slider Example

Example demonstrating a dual slider.

Tip

To see this example in action, download it from
dual_slider
and run:

$ enaml-run dual_slider.enaml

Screenshot

[image: ../_images/ex_dual_slider.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
"""
Example demonstrating a dual slider.

<< autodoc-me >>
"""
from enaml.layout.api import align, vbox, hbox
from enaml.stdlib.fields import IntField
from enaml.widgets.api import (
 Window, Container, Label, Field, DualSlider, Slider, Form
)

enamldef Main(Window):
 title = 'Dual Slider Example'
 Container:
 constraints = [
 vbox(
 hbox(label, low, high),
 hbox(min_lbl, dual_slider, max_lbl),
 hbox(sel_lbl, sel_field, sel_slider),
),
 align('v_center', label, low, high),
 align('v_center', min_lbl, dual_slider, max_lbl),
 align('v_center', sel_lbl, sel_field, sel_slider),
]
 Label: label:
 text = 'Range:'
 IntField: low:
 value := dual_slider.low_value
 IntField: high:
 value := dual_slider.high_value
 Label: min_lbl:
 text << str(dual_slider.minimum)
 Label: max_lbl:
 text << str(dual_slider.maximum)
 DualSlider: dual_slider:
 tick_interval = 10
 minimum = 1
 maximum = 100
 Label: sel_lbl:
 text = 'Set Minimum:'
 Field: sel_field:
 text << str(sel_slider.value)
 read_only = True
 Slider: sel_slider:
 tick_interval = 100
 minimum = 1
 maximum = 1000
 value >> dual_slider.minimum

 Field Example

Field Example

An example of the Field widget.

The Field is the most simple and common text input widget.

This example shows how to use the many properties of the Field widget.

Tip

To see this example in action, download it from
field
and run:

$ enaml-run field.enaml

Screenshot

[image: ../_images/ex_field.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of the `Field` widget.

The `Field` is the most simple and common text input widget.

This example shows how to use the many properties of the `Field` widget.

<< autodoc-me >>
"""
from enaml.widgets.api import Window, Field, Container, ObjectCombo, Label
from enaml.layout.api import vbox, hbox, spacer, align

enamldef Main(Window):
 title = 'The Field widget'

 Container:

 constraints = [
 vbox(
 hbox(label, combo_align, spacer),
 hbox(field, spacer),
),
 align('v_center', label, combo_align),
 field.width == 300,
]

 Label: label:
 text = 'text_align:'

 ObjectCombo: combo_align:
 items = ['left', 'right', 'center']
 selected = 'left'

 Field: field:
 text = 'This is some text'
 text_align << combo_align.selected

 File Dialog Example

File Dialog Example

Example demonstrating a File Dialog

Tip

To see this example in action, download it from
file_dialog
and run:

$ enaml-run file_dialog.enaml

Screenshot

[image: ../_images/ex_file_dialog.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" Example demonstrating a File Dialog

<< autodoc-me >>
"""
from __future__ import unicode_literals

from enaml.layout.api import hbox, align
from enaml.widgets.api import (
 Container, Field, FileDialogEx, Label, PushButton, Window
)

enamldef Main(Window): window:
 attr path : str = ""
 title = 'File Chooser'
 Container:
 constraints = [
 hbox(lbl, fld, pb),
 align('v_center', lbl, fld, pb),
 pb.height == fld.height,
]
 Label: lbl:
 text = 'File'
 Field: fld:
 read_only = True
 text << window.path
 PushButton: pb:
 text = 'Browse'
 clicked ::
 path = FileDialogEx.get_open_file_name(window)
 if path:
 window.path = path

 Flow Area Example

Flow Area Example

An example of the FlowArea widget.

A FlowArea is a very powerful tool for creating a flowing layout of
widgets. A FlowArea accepts an arbitrary number of FlowItem children,
each of which holds a Container as its content. The layout of these
FlowItem children is controlled by the FlowArea attributes:

	direction
	This is an enum controlling how the items are arranged in the
area. Allowable values are ‘left_to_right’, ‘right_to_left’,
‘top_to_bottom’, and ‘bottom_to_top’; and indicate the direction
in which items will be added to the area. When the layout space
in a given direction is exhausted, the layout will wrap around
to the next line. With horizontal directions, lines are stacked
top to bottom. With vertical directions, lines are stacked
left to right.

	align
	This is an enum controlling how a layout line is aligned within
the layout space. If there is any space leftover after laying
out a given line of widgets, that space is distributed according
to the value of this enum. Allowable values are ‘leading’,
‘trailing’, ‘center’, and ‘justify’.

	horizontal_spacing
	This is an int specifying how much horizontal space to place
between items or lines in the layout.

	vertical_spacing
	This is an int specifying how much vertical space to place
between items or lines in the layout.

	margins
	This is a Box of ints specifying how much margin to place
on the outside of the layout.

Each FlowItem used in the layout can further customize the behavior:

	preferred_size
	This is a Size specifying the desired layout size for the item.
This size will be used whenever possible, but will not override
the minimum or maximum size of the item. If set to (-1, -1)
(the default), then the size hint for the item will be used.

	align
	This is an enum which controls the orthogonal alignment of the
item. When an item has neighbors which are larger than itself
in the orhthongonal direction, this value controls how the item
aligns within that additional space. The valid values area
‘leading’, ‘trailing’, and ‘center’.

	stretch
	This is an int which controls the amount that the widget should
expand to take up additional space in the layout direction. The
default is 0 and means that the widget will not expand. When the
value is greater than zero, the value is weighted against the
stretch factors of the other items in the same line to determine
the amount of space given to the item.

	ortho_stretch
	This is an int which controls the amount that the widget should
expand to take up additional space orthogonal to the layout
direction. The default is 0 and means that the widget will not
expand. If no item in a given line can expand in the ortho
direction, then the line will not expand. Otherwise, the stretch
factor for a line is equivalent to the maximum of the ortho
stretch factors for all items in the line. The extra orthogonal
space is then proportioned to the lines weighted on this stretch
factor.

The code below creates a flow area populated with several initial flow
items. Items can be added and removed, and each individual item is
configurable. There is a single item which cannot be removed, and which
controls the parameters for the entire area.

Tip

To see this example in action, download it from
flow_area
and run:

$ enaml-run flow_area.enaml

Screenshot

[image: ../_images/ex_flow_area.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of the `FlowArea` widget.

A `FlowArea` is a very powerful tool for creating a flowing layout of
widgets. A `FlowArea` accepts an arbitrary number of `FlowItem` children,
each of which holds a `Container` as its content. The layout of these
`FlowItem` children is controlled by the `FlowArea` attributes:

 `direction`
 This is an enum controlling how the items are arranged in the
 area. Allowable values are 'left_to_right', 'right_to_left',
 'top_to_bottom', and 'bottom_to_top'; and indicate the direction
 in which items will be added to the area. When the layout space
 in a given direction is exhausted, the layout will wrap around
 to the next line. With horizontal directions, lines are stacked
 top to bottom. With vertical directions, lines are stacked
 left to right.

 `align`
 This is an enum controlling how a layout line is aligned within
 the layout space. If there is any space leftover after laying
 out a given line of widgets, that space is distributed according
 to the value of this enum. Allowable values are 'leading',
 'trailing', 'center', and 'justify'.

 `horizontal_spacing`
 This is an int specifying how much horizontal space to place
 between items or lines in the layout.

 `vertical_spacing`
 This is an int specifying how much vertical space to place
 between items or lines in the layout.

 `margins`
 This is a Box of ints specifying how much margin to place
 on the outside of the layout.

Each `FlowItem` used in the layout can further customize the behavior:

 `preferred_size`
 This is a Size specifying the desired layout size for the item.
 This size will be used whenever possible, but will not override
 the minimum or maximum size of the item. If set to (-1, -1)
 (the default), then the size hint for the item will be used.

 `align`
 This is an enum which controls the orthogonal alignment of the
 item. When an item has neighbors which are larger than itself
 in the orhthongonal direction, this value controls how the item
 aligns within that additional space. The valid values area
 'leading', 'trailing', and 'center'.

 `stretch`
 This is an int which controls the amount that the widget should
 expand to take up additional space in the layout direction. The
 default is 0 and means that the widget will not expand. When the
 value is greater than zero, the value is weighted against the
 stretch factors of the other items in the same line to determine
 the amount of space given to the item.

 `ortho_stretch`
 This is an int which controls the amount that the widget should
 expand to take up additional space orthogonal to the layout
 direction. The default is 0 and means that the widget will not
 expand. If no item in a given line can expand in the ortho
 direction, then the line will not expand. Otherwise, the stretch
 factor for a line is equivalent to the maximum of the ortho
 stretch factors for all items in the line. The extra orthogonal
 space is then proportioned to the lines weighted on this stretch
 factor.

The code below creates a flow area populated with several initial flow
items. Items can be added and removed, and each individual item is
configurable. There is a single item which cannot be removed, and which
controls the parameters for the entire area.

<< autodoc-me >>
"""
from enaml.core.api import Include
from enaml.widgets.api import (
 FlowArea, FlowItem, Window, Form, Label, Field, SpinBox, ComboBox,
 Container, Html, GroupBox, Slider, PushButton,
)

enamldef Item(FlowItem):
 align << align_box.selected_item
 stretch << flow_spin.value
 ortho_stretch << ortho_spin.value
 preferred_size << (pref_width.value, pref_height.value)
 GroupBox:
 Form:
 padding = 0
 Label:
 text = 'Preferred Width'
 SpinBox: pref_width:
 minimum = -1
 maximum = 800
 value = -1
 Label:
 text = 'Preferred Height'
 SpinBox: pref_height:
 minimum = -1
 maximum = 800
 value = -1
 Label:
 text = 'Flow Stretch'
 SpinBox: flow_spin:
 minimum = 0
 maximum = 100
 value = 0
 Label:
 text = 'Ortho Stretch'
 SpinBox: ortho_spin:
 minimum = 0
 maximum = 100
 value = 0
 Label:
 text = 'Ortho Align'
 ComboBox: align_box:
 items = ['leading', 'center', 'trailing']
 index = 0
 Html:
 source = '<center>Hello World</center>'

enamldef AreaControls(GroupBox):
 attr area: FlowArea
 event add_item
 event remove_item
 title = 'Area Controls'
 Label:
 text =('Add new items to see how the flow area works.\n'
 'You can also tweak the flow parameters')
 PushButton:
 text = 'Add Item'
 clicked :: add_item()
 PushButton:
 text = 'Remove Item'
 clicked :: remove_item()
 Form:
 padding = 0
 Label:
 text = 'Horizontal Spacing'
 Slider:
 minimum = 0
 maximum = 150
 value := area.horizontal_spacing
 Label:
 text = 'Vertical Spacing'
 Slider:
 minimum = 0
 maximum = 150
 value := area.vertical_spacing
 Label:
 text = 'Direction'
 ComboBox:
 items = [
 'left_to_right', 'right_to_left',
 'top_to_bottom', 'bottom_to_top',
]
 index = items.index(area.direction)
 selected_item >> area.direction
 Label:
 text = 'Align'
 ComboBox:
 items = ['leading', 'center', 'justify', 'trailing']
 index = items.index(area.align)
 selected_item >> area.align

enamldef Main(Window):
 initial_size = (800,800)
 Container:
 FlowArea: flow_area:
 FlowItem:
 AreaControls:
 area = flow_area
 add_item ::
 inc.objects.append(Item())
 remove_item ::
 if inc.objects:
 inc.objects.pop()
 Include: inc:
 pass

 Focus Traversal Example

Focus Traversal Example

An example of using the FocusTraversal advanced widget feature.

The FocusTraversal is an advanced widget feature for controlling the
order in which widgets receive focus during Tab and Shift+Tab keyboard
events. It enables two methods which can be implemented as declarative
Enaml functions which will compute the next/previous focus widgets on
demand.

In this example, the traversal handlers simply return the next or
previous field from a double-linked list of fields. However, there
is no restriction on how the handlers actually compute the focus
widgets.

Tip

To see this example in action, download it from
focus_traversal
and run:

$ enaml-run focus_traversal.enaml

Screenshot

[image: ../_images/ex_focus_traversal.png]

Example Enaml Code

#--
Copyright (c) 2014, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of using the FocusTraversal advanced widget feature.

The FocusTraversal is an advanced widget feature for controlling the
order in which widgets receive focus during Tab and Shift+Tab keyboard
events. It enables two methods which can be implemented as declarative
Enaml functions which will compute the next/previous focus widgets on
demand.

In this example, the traversal handlers simply return the next or
previous field from a double-linked list of fields. However, there
is no restriction on how the handlers actually compute the focus
widgets.

<< autodoc-me >>
"""
from enaml.widgets.api import Window, GroupBox, Field, FocusTracker, Container, Feature

enamldef LinkField(Field):
 attr next_field
 attr prev_field

enamldef Main(Window):
 title = 'Focus Traversal'
 Container:
 features = Feature.FocusTraversal

 next_focus_child => (current): # triggered on Tab
 return getattr(current, 'next_field', None)

 previous_focus_child => (current): # triggered on Shift+Tab
 return getattr(current, 'prev_field', None)

 FocusTracker:
 focused_widget::
 print(change["value"])

 GroupBox:
 title = 'First Group'
 LinkField: f1:
 placeholder = '1'
 next_field = f4
 prev_field = f5
 LinkField: f2:
 placeholder = '5'
 next_field = f7
 prev_field = f6
 LinkField: f3:
 placeholder = '3'
 next_field = f6
 prev_field = f4
 LinkField: f4:
 placeholder = '2'
 next_field = f3
 prev_field = f1
 GroupBox:
 title = 'Second Group'
 LinkField: f5:
 placeholder = '7'
 next_field = f1
 prev_field = f7
 LinkField: f6:
 placeholder = '4'
 next_field = f2
 prev_field = f3
 LinkField: f7:
 placeholder = '6'
 next_field = f5
 prev_field = f2

 Form Spacing Example

Form Spacing Example

An example of controlling Form spacing.

The Form widget allows the developer to control the spacing between the
rows and columns in the form. Changes to the row and column spacing at
runtime are automatically reflected in the layout.

Tip

To see this example in action, download it from
form_spacing
and run:

$ enaml-run form_spacing.enaml

Screenshot

[image: ../_images/ex_form_spacing.png]

Example Enaml Code

#--
Copyright (c) 2014, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of controlling Form spacing.

The Form widget allows the developer to control the spacing between the
rows and columns in the form. Changes to the row and column spacing at
runtime are automatically reflected in the layout.

<< autodoc-me >>
"""
from enaml.layout.api import vbox
from enaml.widgets.api import (
 Window, Container, Form, CheckBox, Label, Field, Separator, SpinBox
)

enamldef Main(Window):
 title = 'Form Spacing'
 Container:
 padding = 0
 constraints = [vbox(f1, 0, sep, 0, f2)]
 Form: f1:
 Label:
 text = 'Two Visible'
 CheckBox: cbox:
 checked = True
 Label:
 text = 'Row Spacing'
 SpinBox: rspin:
 value = 10
 Label:
 text = 'Column Spacing'
 SpinBox: cspin:
 value = 10
 Separator: sep:
 pass
 Form: f2:
 row_spacing << rspin.value
 column_spacing << cspin.value
 Label:
 text = 'One'
 Field:
 pass
 Label:
 text = 'Two'
 visible << cbox.checked
 Field:
 visible << cbox.checked
 Label:
 text = 'A Long Label'
 Field:
 pass

 Form Example

Form Example

An example of the Form widget.

A Form is a simple subclass of Container which automatically lays
out it children in two columns, neatly aligning the widget edges. If
a Form has an odd number of children, the last child will span both
columns. The typical use case of a Form alternates Label and Field
instances, but there is not restriction on the types of children used
with a form, except that they be constrainable.

Tip

To see this example in action, download it from
form
and run:

$ enaml-run form.enaml

Screenshot

[image: ../_images/ex_form.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of the `Form` widget.

A `Form` is a simple subclass of `Container` which automatically lays
out it children in two columns, neatly aligning the widget edges. If
a `Form` has an odd number of children, the last child will span both
columns. The typical use case of a `Form` alternates `Label` and `Field`
instances, but there is not restriction on the types of children used
with a form, except that they be constrainable.

<< autodoc-me >>
"""
from enaml.layout.api import hbox
from enaml.widgets.api import Window, Form, Container, Label, Slider, Field

enamldef Main(Window):
 Form:
 Label:
 text = 'First Name'
 Field:
 pass
 Label:
 text = 'Last Name'
 Field:
 pass
 Label:
 text = 'Age'
 Container:
 padding = 0
 constraints = [
 hbox(lbl, sldr),
 lbl.v_center == sldr.v_center,
]
 Label: lbl:
 text << '%d' % sldr.value
 constraints = [width == 25]
 Slider: sldr:
 pass
 Field:
 placeholder = 'Odd Number Child'

 Group Box Example

Group Box Example

An example of the GroupBox widget.

A GroupBox is a simple subclass of Container which draws itself with
an optional bounding box and title.

Tip

To see this example in action, download it from
group_box
and run:

$ enaml-run group_box.enaml

Screenshot

[image: ../_images/ex_group_box.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of the `GroupBox` widget.

A `GroupBox` is a simple subclass of `Container` which draws itself with
an optional bounding box and title.

<< autodoc-me >>
"""
from __future__ import print_function
from enaml.layout.api import vbox, hbox, spacer, align
from enaml.widgets.api import (
 Window, Container, GroupBox, Form, Label, Field, CheckBox, ComboBox,
 MultilineField, PushButton,
)

enamldef Main(Window):
 title = "Group Boxes"
 Container:
 constraints = [
 vbox(
 grp_box,
 hbox(push, spacer, title_check, flat_check, combo_box),
 multiline,
),
 align('v_center', title_check, flat_check, combo_box),
]
 GroupBox: grp_box:
 title << "Personal Details" if title_check.checked else ""
 title_align << combo_box.items[combo_box.index]
 Form:
 Label:
 text = "First name:"
 Field:
 pass
 Label:
 text = "Last name:"
 Field:
 pass
 Label:
 text = "Home phone:"
 Field:
 pass
 CheckBox: title_check:
 text = "Show Title"
 checked = True
 CheckBox: flat_check:
 text = "Flat"
 checked := grp_box.flat
 PushButton: push:
 text = "Submit"
 clicked ::
 print('Submit')
 print(multiline.text)
 ComboBox: combo_box:
 index = 0
 items = ['left', 'center', 'right']
 MultilineField: multiline:
 pass

 H Group Example

H Group Example

An example of the HGroup convenience container.

The HGroup is a convenience container which provides a simple horizontal
group of child widgets, with knobs to control inter-widget spacing, leading
and trailing spacers, and width alignment.

Tip

To see this example in action, download it from
h_group
and run:

$ enaml-run h_group.enaml

Screenshot

[image: ../_images/ex_h_group.png]

Example Enaml Code

#--
Copyright (c) 2014, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of the `HGroup` convenience container.

The HGroup is a convenience container which provides a simple horizontal
group of child widgets, with knobs to control inter-widget spacing, leading
and trailing spacers, and width alignment.

<< autodoc-me >>
"""
from enaml.layout.api import spacer
from enaml.widgets.api import (
 Window, Label, Separator, Field, Form, VGroup, HGroup, CheckBox, SpinBox
)

enamldef Main(Window):
 title = 'HGroup'
 VGroup:
 padding = 0
 spacing = 0
 Form:
 Label:
 text = 'Leading Spacer'
 CheckBox: lsp:
 checked = False
 Label:
 text = 'Trailing Spacer'
 CheckBox: rsp:
 checked = False
 Label:
 text = 'Align Widths'
 CheckBox: wbx:
 checked = True
 Label:
 text = 'Spacing'
 SpinBox: spin:
 value = 10
 Separator:
 pass
 HGroup:
 leading_spacer << spacer(0) if lsp.checked else None
 trailing_spacer << spacer(0) if rsp.checked else None
 spacing << spin.value
 align_widths << wbx.checked
 Field:
 pass
 Field:
 pass
 Field:
 pass

 Image View Example

Image View Example

An example of the ImageView widget.

This example shows how a PNG image (in an enaml Image object) can displayed.

Tip

To see this example in action, download it from
image_view
and run:

$ enaml-run image_view.enaml

Screenshot

[image: ../_images/ex_image_view.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of the `ImageView` widget.

This example shows how a PNG image (in an enaml Image object) can displayed.

<< autodoc-me >>
"""
import os
from pathlib import Path

from enaml.image import Image
from enaml.layout.api import vbox, hbox, spacer
from enaml.widgets.api import Window, Container, ComboBox, ImageView

def image_path(name):
 dirname = os.path.dirname(__file__)
 return os.path.join(dirname, 'images', name)

IMAGES = {
 'None': None,
 'Image A': Image(data=Path(image_path('img1.png')).read_bytes()),
 'Image B': Image(data=Path(image_path('img2.png')).read_bytes()),
 'Image C': Image(data=Path(image_path('img3.png')).read_bytes()),
}

enamldef Main(Window):
 Container:
 constraints = [
 vbox(hbox(cbox, spacer), img),
]
 ComboBox: cbox:
 items = sorted(IMAGES.keys())
 index = 0
 ImageView: img:
 hug_width = "strong"
 image << IMAGES[cbox.selected_item]

 Ipython Console Example

Ipython Console Example

An example of the IPythonConsole widget.

Requires qtconsole to be installed.

Tip

To see this example in action, download it from
ipython_console
and run:

$ enaml-run ipython_console.enaml

Screenshot

[image: ../_images/ex_ipython_console.png]

Example Enaml Code

#--
Copyright (c) 2017, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of the `IPythonConsole` widget.

Requires qtconsole to be installed.

<< autodoc-me >>
"""
from enaml.widgets.api import Window, Container, IPythonConsole

enamldef Main(Window):
 title = 'IPython console'
 Container:
 padding = 0
 IPythonConsole:
 pass

 Main Window Example

Main Window Example

An example of the MainWindow widget.

This example demonstrates the use of the MainWindow widget. This is a
subclass of the Window widget which adds support for dock panes, tool
bars and a menu bar. The children of a MainWindow can be defined in
any order. Like Window, a MainWindow has at most one central widget
which is an instance of Container. A MainWindow can have any number
of DockPane and ToolBar children, and at most one MenuBar.

Support for a StatusBar will be added in the future.

Tip

To see this example in action, download it from
main_window
and run:

$ enaml-run main_window.enaml

Screenshot

[image: ../_images/ex_main_window.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of the `MainWindow` widget.

This example demonstrates the use of the `MainWindow` widget. This is a
subclass of the `Window` widget which adds support for dock panes, tool
bars and a menu bar. The children of a `MainWindow` can be defined in
any order. Like `Window`, a `MainWindow` has at most one central widget
which is an instance of `Container`. A `MainWindow` can have any number
of `DockPane` and `ToolBar` children, and at most one `MenuBar`.

Support for a `StatusBar` will be added in the future.

<< autodoc-me >>
"""
from __future__ import print_function
from enaml.layout.api import vbox
from enaml.widgets.api import (
 MainWindow, ToolBar, DockPane, MenuBar, Menu, Action, ActionGroup,
 StatusBar, StatusItem, Container, Html, PushButton, Label,
)

enamldef MyMenuBar(MenuBar):
 Menu:
 title = '&File'
 Action:
 text = 'New File\tCtrl+N'
 triggered :: print('New File triggered')
 Action:
 text = 'Open File\tCtrl+O'
 triggered :: print('Open File triggered')
 Action:
 text = 'Open Folder...'
 triggered :: print('Open Folder triggered')
 Menu:
 title = '&Edit'
 Action:
 text = 'Undo\tCtrl+Z'
 triggered :: print('Undo triggered')
 Action:
 text = 'Redo\tCtrl+R'
 triggered :: print('Redo triggered')
 Menu:
 title = 'Undo Selection'
 Action:
 text = 'Undo Insert\tCtrl+U'
 triggered :: print('Undo Insert triggered')
 Action:
 text = 'Redo Insert\tCtrl+Shift+U'
 enabled = False
 triggered :: print('Redo Insert triggered')
 Action:
 separator = True
 Action:
 text = 'Cut\tCtrl+X'
 triggered :: print("Cut triggered")
 Action:
 text = 'Copy\tCtrl+C'
 triggered :: print('Copy triggered')
 Action:
 text = 'Paste\tCtrl+V'
 triggered :: print('Paste triggered')
 Menu:
 title = '&View'
 ActionGroup:
 Action:
 checkable = True
 text = 'Center'
 toggled ::
 print('%s toggled %s' % (text, 'on' if checked else 'off'))
 Action:
 checkable = True
 text = 'Left'
 toggled ::
 print('%s toggled %s' % (text, 'on' if checked else 'off'))
 Action:
 checkable = True
 text = 'Right'
 toggled ::
 print('%s toggled %s' % (text, 'on' if checked else 'off'))
 Action:
 checkable = True
 text = 'Justify'
 toggled ::
 print('%s toggled %s' % (text, 'on' if checked else 'off'))

enamldef MyStatusBar(StatusBar):
 StatusItem:
 Label:
 text = "Status"

enamldef MyToolBar(ToolBar):
 Action:
 text = 'Button'
 tool_tip = text
 ActionGroup:
 Action:
 separator = True
 Action:
 checkable = True
 text = 'Exclusive'
 triggered :: print('triggered')
 toggled :: print('toggled')
 Action:
 checkable = True
 text = 'ToolBar'
 Action:
 checkable = True
 text = 'Buttons'
 Action:
 separator = True
 Action:
 checkable = True
 text = 'Checkable'
 Action:
 checkable = True
 text = 'ToolBar'
 Action:
 checkable = True
 text = 'Buttons'

enamldef MyDockPane(DockPane):
 title << 'Dock Area %s | %s' % (dock_area, 'floating' if floating else 'docked')
 Container:
 PushButton:
 text = 'Foo'
 PushButton:
 text = 'Bar'
 PushButton:
 text = 'Baz'

enamldef Main(MainWindow):
 MyMenuBar:
 pass
 MyStatusBar:
 pass
 MyToolBar:
 pass
 MyToolBar:
 dock_area = 'left'
 MyToolBar:
 dock_area = 'bottom'
 MyDockPane:
 dock_area = 'left'
 allowed_dock_areas = ['left', 'right']
 MyDockPane:
 dock_area = 'right'
 MyDockPane:
 dock_area = 'right'
 movable = False
 Container:
 constraints = [vbox(html, tbar, spacing=0)]
 Html: html:
 source = '<h1><center>Hello World!</center></h1>'
 MyToolBar: tbar:
 pass
 MyDockPane:
 dock_area = 'bottom'
 floating = True

 Menu Bar Example

Menu Bar Example

An example of the MenuBar widget.

This example demonstrates the use of the MenuBar widget. A MenuBar
can have an arbitrary number of children, which must be Menu widgets.
A Menu can have an arbitrary number of children which must be Menu
widgets or Action widgets. An Menu child becomes a submenu, and an
Action is represented as a clickable menu item. A MenuBar must be
used as the child of a MainWindow.

This example also demonstrates the ActionGroup widget. An ActionGroup
is used logically group multiple Action widgets together. Changes to
the enabled or visible state of the ActionGroup apply to all of the
Action widgets in that group. Additionally, the ActionGroup is the
primary means of making Action widgets exclusive. The default behavior
of the group is to make all child Action widgets mutually exclusive.
This can be disabled by setting exclusive = False on the ActionGroup.

Tip

To see this example in action, download it from
menu_bar
and run:

$ enaml-run menu_bar.enaml

Screenshot

[image: ../_images/ex_menu_bar.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of the `MenuBar` widget.

This example demonstrates the use of the `MenuBar` widget. A `MenuBar`
can have an arbitrary number of children, which must be `Menu` widgets.
A `Menu` can have an arbitrary number of children which must be `Menu`
widgets or `Action` widgets. An `Menu` child becomes a submenu, and an
`Action` is represented as a clickable menu item. A `MenuBar` must be
used as the child of a `MainWindow`.

This example also demonstrates the `ActionGroup` widget. An `ActionGroup`
is used logically group multiple `Action` widgets together. Changes to
the `enabled` or `visible` state of the `ActionGroup` apply to all of the
`Action` widgets in that group. Additionally, the `ActionGroup` is the
primary means of making `Action` widgets exclusive. The default behavior
of the group is to make all child `Action` widgets mutually exclusive.
This can be disabled by setting `exclusive = False` on the `ActionGroup`.

<< autodoc-me >>
"""
from __future__ import print_function
from enaml.widgets.api import MainWindow, MenuBar, Menu, Action, ActionGroup

enamldef Main(MainWindow):
 MenuBar:
 Menu:
 title = '&File'
 Action:
 text = 'New File\tCtrl+N'
 triggered :: print('New File triggered')
 Action:
 text = 'Open File\tCtrl+O'
 triggered :: print('Open File triggered')
 Action:
 text = 'Open Folder...'
 triggered :: print('Open Folder triggered')
 Menu:
 title = '&Edit'
 Action:
 text = 'Undo\tCtrl+Z'
 triggered :: print('Undo triggered')
 Action:
 text = 'Redo\tCtrl+R'
 triggered :: print('Redo triggered')
 Menu:
 title = 'Undo Selection'
 Action:
 text = 'Undo Insert\tCtrl+U'
 triggered :: print('Undo Insert triggered')
 Action:
 text = 'Redo Insert\tCtrl+Shift+U'
 enabled = False
 triggered :: print('Redo Insert triggered')
 Action:
 separator = True
 Action:
 text = 'Cut\tCtrl+X'
 triggered :: print("Cut triggered")
 Action:
 text = 'Copy\tCtrl+C'
 triggered :: print('Copy triggered')
 Action:
 text = 'Paste\tCtrl+V'
 triggered :: print('Paste triggered')
 Menu:
 title = '&View'
 ActionGroup:
 Action:
 checkable = True
 text = 'Center'
 toggled :: print('%s toggled %s' % (text, 'on' if checked else 'off'))
 Action:
 checkable = True
 text = 'Left'
 toggled :: print('%s toggled %s' % (text, 'on' if checked else 'off'))
 Action:
 checkable = True
 text = 'Right'
 toggled :: print('%s toggled %s' % (text, 'on' if checked else 'off'))
 Action:
 checkable = True
 text = 'Justify'
 toggled :: print('%s toggled %s' % (text, 'on' if checked else 'off'))

 Mdi Area Example

Mdi Area Example

An example of the MdiArea and MdiWindow widget.

Demonstrate how to use the MdiArea which provides an area in which multiple
subwindows can be displayed (MdiWindow instances). Sub windows can be
automatically tiled or cascaded.

Tip

To see this example in action, download it from
mdi_area
and run:

$ enaml-run mdi_area.enaml

Screenshot

[image: ../_images/ex_mdi_area.png]

Example Enaml Code

#--
Copyright (c) 2013-2018, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of the `MdiArea` and `MdiWindow` widget.

Demonstrate how to use the MdiArea which provides an area in which multiple
subwindows can be displayed (MdiWindow instances). Sub windows can be
automatically tiled or cascaded.

<< autodoc-me >>
"""
from __future__ import print_function
from enaml.widgets.api import (
 Window, Container, MdiArea, MdiWindow,
 PushButton, CheckBox, Field, Html, GroupBox
)
from enaml.core.api import Include
from enaml.layout.api import vbox, hbox, align, spacer

enamldef MdiContent(MdiWindow):
 attr num: int
 title = 'Window %d' % num
 Container:
 constraints = [
 vbox(
 hbox(pb, cb, fld),
 html,
),
 align('v_center', pb, cb, fld),
]
 PushButton: pb:
 text = 'Button'
 CheckBox: cb:
 text = 'Activate'
 Field: fld:
 pass
 Html: html:
 source = '<h1>New window %d</h1>'%num

enamldef Main(Window): main:
 attr count: int = 1
 attr mdi_visible = True
 Container:
 constraints = [
 vbox(hbox(add_btn, vis, tile, cascade, spacer),
 mdi
)]
 PushButton: add_btn:
 text = 'Add New MDI Window'
 clicked ::
 win = MdiContent(num=count, visible=mdi_visible)
 dyn_win.objects.append(win)
 main.count += 1

 PushButton: vis:
 text << 'Hide all' if mdi_visible else 'Show all'
 clicked ::
 for w in mdi.mdi_windows():
 if mdi_visible:
 w.hide()
 else:
 w.show()
 main.mdi_visible = not mdi_visible

 PushButton: tile:
 text << 'Tile subwindows'
 clicked ::
 mdi.tile_mdi_windows()

 PushButton: cascade:
 text << 'Cascade subwindows'
 clicked ::
 mdi.cascade_mdi_windows()

 MdiArea: mdi:
 MdiContent:
 num = 0
 Include: dyn_win:
 pass

 Mpl Canvas Example

Mpl Canvas Example

An example of embedding a maplotlib plot inside an Enaml application.

Tip

To see this example in action, download it from
mpl_canvas
and run:

$ enaml-run mpl_canvas.enaml

Screenshot

[image: ../_images/ex_mpl_canvas.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of embedding a maplotlib plot inside an Enaml application.

<< autodoc-me >>
"""
from enaml.layout.api import vbox, hbox, spacer
from enaml.widgets.api import Window, Container, MPLCanvas, CheckBox, ComboBox

from matplotlib.figure import Figure

fig1 = Figure()
ax1 = fig1.add_subplot(111)
ax1.plot([1, 2, 3])

fig2 = Figure()
ax2 = fig2.add_subplot(111)
ax2.plot([5, 2, 8, 1])

figures = {
 'one': fig1,
 'two': fig2,
}

enamldef Main(Window):
 Container:
 constraints = [
 vbox(
 hbox(cbox, check, spacer),
 canvas,
),
 cbox.v_center == check.v_center,
]
 ComboBox: cbox:
 items = ['one', 'two']
 index = 0
 CheckBox: check:
 text = 'Toolbar Visible'
 checked := canvas.toolbar_visible
 MPLCanvas: canvas:
 figure << figures[cbox.selected_item]

 Notebook Example

Notebook Example

An example of the Notebook widget.

This example demonstrates the use of the Notebook widget. A Notebook
displays its children as a tabbed control, where one child is visible
at a time. The children of a Notebook must be instances of Page and
parent of a Page must be a Notebook. A Page can have at most one
child which must be an instance of Container. This Container is
expanded to fill the available space in the page. A Notebook is layed
out using constraints just like normal constraints enabled widgets.

Implementation Notes:

Changing the tab style of the Notebook dynamically is not
supported on Wx. Close buttons on tabs is not supported on
Wx when using the ‘preferences’ tab style.

Tip

To see this example in action, download it from
notebook
and run:

$ enaml-run notebook.enaml

Screenshot

[image: ../_images/ex_notebook.png]

Example Enaml Code

#--
Copyright (c) 2013-2018, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of the `Notebook` widget.

This example demonstrates the use of the `Notebook` widget. A `Notebook`
displays its children as a tabbed control, where one child is visible
at a time. The children of a `Notebook` must be instances of `Page` and
parent of a `Page` must be a `Notebook`. A `Page` can have at most one
child which must be an instance of `Container`. This `Container` is
expanded to fill the available space in the page. A `Notebook` is layed
out using constraints just like normal constraints enabled widgets.

Implementation Notes:

 Changing the tab style of the `Notebook` dynamically is not
 supported on Wx. Close buttons on tabs is not supported on
 Wx when using the 'preferences' tab style.

<< autodoc-me >>
"""
from enaml.widgets.api import (
 Window, Notebook, Page, Container, PushButton, Field, Html, CheckBox
)

enamldef Main(Window):
 Container:
 Notebook: nbook:
 tab_style = 'preferences'
 Page:
 title = 'Foo Page'
 closable = False
 tool_tip = 'Foo Page here'
 Container:
 PushButton:
 text = 'Open Bar Page'
 enabled << not bar.visible
 clicked :: bar.open()
 PushButton:
 text = 'Open Baz Page'
 enabled << not baz.visible
 clicked :: baz.open()
 PushButton:
 text = 'Go to Bar Page'
 enabled << bar.visible
 clicked ::
 nbook.selected_tab = 'bar_page'
 PushButton:
 text = 'Go to Baz Page'
 enabled << baz.visible
 clicked ::
 nbook.selected_tab = 'baz_page'
 CheckBox:
 text = 'Tabs Closable'
 checked := nbook.tabs_closable
 CheckBox:
 text = 'Tabs Movable'
 checked := nbook.tabs_movable
 CheckBox:
 text = 'Document Style Tabs'
 checked << nbook.tab_style == 'document'
 toggled ::
 if checked:
 nbook.tab_style = 'document'
 else:
 nbook.tab_style = 'preferences'
 Page: bar:
 title = 'Bar Page'
 name = 'bar_page'
 Container:
 Field:
 pass
 Field:
 pass
 Field:
 pass
 Page: baz:
 title = 'Baz Page'
 name = 'baz_page'
 Container:
 padding = 0
 Html:
 source = '<h1><center>Hello World!</center></h1>'

 Popup Menu Example

Popup Menu Example

This example demonstrates how to popup a menu.

A menu can be popped up in 2-ways. The first is by declaring the menu as
a child of a widget and setting the ‘context_menu’ attribute to True. The
second method is by creating the menu on-demand, and then invoking it’s
‘popup()’ method to show the menu at the current mouse location.

Tip

To see this example in action, download it from
popup_menu
and run:

$ enaml-run popup_menu.enaml

Screenshot

[image: ../_images/ex_popup_menu.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" This example demonstrates how to popup a menu.

A menu can be popped up in 2-ways. The first is by declaring the menu as
a child of a widget and setting the 'context_menu' attribute to True. The
second method is by creating the menu on-demand, and then invoking it's
'popup()' method to show the menu at the current mouse location.

<< autodoc-me >>
"""
from __future__ import print_function
from enaml.widgets.api import (
 Window, Container, PushButton, Menu, Action, Field
)

enamldef PopupMenu(Menu):
 Action:
 text = 'foo'
 triggered :: print(text + ' triggered')
 Action:
 text = 'bar'
 triggered :: print(text + ' triggered')
 Action:
 text = 'baz'
 triggered :: print(text + ' triggered')
 Action:
 text = 'spam'
 triggered :: print(text + ' triggered')
 Action:
 text = 'ham'
 triggered :: print(text + ' triggered')

enamldef Main(Window):
 Container:
 PushButton:
 text = 'Popup Menu'
 clicked :: PopupMenu().popup()
 Field:
 text = 'Context Menu'
 read_only = True
 PopupMenu:
 context_menu = True

 Popup View Example

Popup View Example

This is an example of a fully dynamic PopupView widget.

The PopupView is useful for displaying transient configuration dialogs
and notification windows. The widget supports a transparent background.

Tip

To see this example in action, download it from
popup_view
and run:

$ enaml-run popup_view.enaml

Screenshot

[image: ../_images/ex_popup_view.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" This is an example of a fully dynamic PopupView widget.

The PopupView is useful for displaying transient configuration dialogs
and notification windows. The widget supports a transparent background.

<< autodoc-me >>
"""
from enaml.core.api import Include
from enaml.widgets.api import (
 Window, Container, PopupView, Form, Label, PushButton, ComboBox, Slider,
 Field, SpinBox
)

POSITIONS = {
 'Top Left': (0.0, 0.0),
 'Top Center': (0.5, 0.0),
 'Top Right': (1.0, 0.0),
 'Left': (0.0, 0.5),
 'Center': (0.5, 0.5),
 'Right': (1.0, 0.5),
 'Bottom Left': (0.0, 1.0),
 'Bottom Center': (0.5, 1.0),
 'Bottom Right': (1.0, 1.0),
}

enamldef ConfigPopup(PopupView): popup:
 foreground = 'white'
 background = 'rgba(30, 30, 30, 0.85)'
 parent_anchor << POSITIONS[parent_box.selected_item]
 anchor << POSITIONS[view_box.selected_item]
 arrow_size << sizer.value
 arrow_edge << edge.selected_item
 offset << (offset_x.value, offset_y.value)
 Form:
 padding = 20
 Label:
 foreground = 'white'
 text = 'Arrow Size'
 Slider: sizer:
 minimum = 5
 maximum = 30
 value = 20
 Label:
 foreground = 'white'
 text = 'Arrow Edge'
 ComboBox: edge:
 items = ['top', 'bottom', 'left', 'right']
 index = 0
 Label:
 foreground = 'white'
 text = 'Parent Anchor'
 ComboBox: parent_box:
 items = sorted(POSITIONS.keys())
 index = items.index('Center')
 Label:
 foreground = 'white'
 text = 'View Anchor'
 ComboBox: view_box:
 items = sorted(POSITIONS.keys())
 index = items.index('Top Center')
 Label:
 foreground = 'white'
 text = 'Offset X'
 SpinBox: offset_x:
 minimum = -30
 maximum = 30
 Label:
 foreground = 'white'
 text = 'Offset Y'
 SpinBox: offset_y:
 minimum = -30
 maximum = 30
 Include: inc:
 pass
 PushButton:
 text = 'Add Row'
 clicked ::
 items = [Label(text='Label', foreground='white'), Field()]
 inc.objects.extend(items)
 PushButton:
 text = 'Close'
 clicked :: popup.close()

enamldef NotificationPopup(PopupView):
 foreground = 'white'
 background = 'rgba(30, 30, 30, 0.85)'
 window_type = 'tool_tip'
 parent_anchor = (1.0, 1.0)
 anchor = (1.0, 1.0)
 offset = (-10, -10)
 timeout = 5
 fade_in_duration = 500
 fade_out_duration = 500
 Container:
 Label:
 foreground = 'white'
 text = 'Hello Enaml Notifications'
 align = 'center'

enamldef Main(Window): win:
 initial_size = (400, 400)
 Container:
 PushButton:
 text = 'Show Config Popup'
 clicked :: ConfigPopup(self).show()
 PushButton:
 text = 'Show Window Notification'
 clicked :: NotificationPopup(win, window_type='window').show()
 PushButton:
 text = 'Show Desktop Notification'
 clicked :: NotificationPopup().show()
 PushButton:
 text = 'Show Mouse Notification'
 clicked ::
 popup = NotificationPopup()
 popup.anchor_mode = 'cursor'
 popup.anchor = (0.0, 0.0)
 popup.offset = (0, 0)
 popup.timeout = 1
 popup.show()

 Progress Bar Example

Progress Bar Example

An example of the ‘ProgressBar’ widget.

This example demonstrates the use the ProgressBar widget by hooking
it up to a PushButton widgets which simulates a work update.

Tip

To see this example in action, download it from
progress_bar
and run:

$ enaml-run progress_bar.enaml

Screenshot

[image: ../_images/ex_progress_bar.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of the 'ProgressBar' widget.

This example demonstrates the use the `ProgressBar` widget by hooking
it up to a `PushButton` widgets which simulates a work update.

<< autodoc-me >>
"""
import random
from enaml.layout.api import hbox, align
from enaml.widgets.api import (
 Window, Container, ProgressBar, Label, PushButton
)

enamldef Main(Window):
 title = 'Progress Bar'
 Container:
 constraints = [
 hbox(work_button, progress, label),
 align('v_center', work_button, progress, label),
]
 ProgressBar: progress:
 pass
 Label: label:
 text << '{0}% ({1}/{2})'.format(progress.percentage, progress.value, progress.maximum)
 PushButton: work_button:
 text << "Do Some Work" if progress.percentage < 100 else "Reset"
 clicked ::
 if progress.percentage < 100:
 val = progress.value + random.randint(0, 10)
 progress.value = min(val, 100)
 else:
 progress.value = 0

 Scroll Area Example

Scroll Area Example

An example of the ScrollArea widget.

A ScrollArea can have at most one child which must be an instance of
Container. When to show the scroll bars is determined automatically
based on the sizing constraints of the Container. However, that
policy can be changed through the attributes ‘horizontal_policy’ and
‘vertical_policy’. These attributes can be set to ‘as_needed’,
‘always_on’, and ‘always_off’. The default is ‘as_needed’.

Tip

To see this example in action, download it from
scroll_area
and run:

$ enaml-run scroll_area.enaml

Screenshot

[image: ../_images/ex_scroll_area.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of the `ScrollArea` widget.

A `ScrollArea` can have at most one child which must be an instance of
`Container`. When to show the scroll bars is determined automatically
based on the sizing constraints of the `Container`. However, that
policy can be changed through the attributes 'horizontal_policy' and
'vertical_policy'. These attributes can be set to 'as_needed',
'always_on', and 'always_off'. The default is 'as_needed'.

<< autodoc-me >>
"""
from enaml.widgets.api import Container, Field, Form, Label, ScrollArea, Window

enamldef Main(Window):
 title = "Scroll Area"
 Container:
 padding = 0
 ScrollArea:
 constraints = [width >= 200]
 Form:
 Label:
 text = "First name:"
 Field:
 pass
 Label:
 text = "Last name:"
 Field:
 pass
 Label:
 text = "Address:"
 Field:
 pass
 Label:
 text = ""
 Field:
 pass
 Label:
 text = "City:"
 Field:
 pass
 Label:
 text = "State:"
 Field:
 pass
 Label:
 text = "Postal Code:"
 Field:
 pass
 Label:
 text = "Country:"
 Field:
 pass
 Label:
 text = "Phone number:"
 Field:
 pass
 Label:
 text = "Email:"
 Field:
 pass
 Label:
 text = "Confirm email:"
 Field:
 pass
 Label:
 text = "Confirm email:"
 Field:
 pass
 Label:
 text = "Confirm email:"
 Field:
 pass
 Label:
 text = "Confirm email:"
 Field:
 pass
 Label:
 text = "Confirm email:"
 Field:
 pass
 Label:
 text = "Confirm email:"
 Field:
 pass

 Slider Example

Slider Example

An example of the Slider widget.

This example demonstrates the use of a simple Slider control which is
used to compute the log of a range of numbers.

Tip

To see this example in action, download it from
slider
and run:

$ enaml-run slider.enaml

Screenshot

[image: ../_images/ex_slider.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of the `Slider` widget.

This example demonstrates the use of a simple `Slider` control which is
used to compute the log of a range of numbers.

<< autodoc-me >>
"""
import math
from enaml.widgets.api import Window, Form, Label, Field, Slider

enamldef Main(Window):
 title = 'Slider Example'
 Form:
 Label:
 text = 'Log Value'
 Field:
 text << '{}'.format(math.log(slider.value))
 read_only = True
 Slider: slider:
 tick_interval = 50
 maximum = 1000
 minimum = 1

 Spin Box Example

Spin Box Example

An example of the SpinBox widget.

This example demonstrates the use of a simple SpinBox control which is
used to select from a discrete range of integer values.

Tip

To see this example in action, download it from
spin_box
and run:

$ enaml-run spin_box.enaml

Screenshot

[image: ../_images/ex_spin_box.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of the `SpinBox` widget.

This example demonstrates the use of a simple `SpinBox` control which is
used to select from a discrete range of integer values.

<< autodoc-me >>
"""
from enaml.widgets.api import Window, Form, Label, Field, SpinBox
from enaml.layout.api import hbox, vbox

enamldef Main(Window):
 title = 'SpinBox Example'
 Form:
 Label: lbl:
 text = 'Select Age'
 SpinBox: sbox:
 maximum = 100
 minimum = 0
 Field: fld:
 text << 'Age: {}'.format(sbox.value)
 read_only = True

 Splitter Example

Splitter Example

An example of the Splitter widget.

A Splitter is a widget which can hold an arbitrary number of children
which must be instances of Container. The Splitter will separate
each Container with a bar which can be dragged by the user to change
the space allocated to the containers. This example shows how complex
arrangements can be acheived by nesting Splitter widgets inside
child Container widgets.

Implementation notes:

The splitter support on Wx is poor. Certain behaviors, like initial
splitter sizing does not work well (if at all). If a production
application requires splitter support, prefer the Qt backend over
Wx (this is generally a good life-rule).

Tip

To see this example in action, download it from
splitter
and run:

$ enaml-run splitter.enaml

Screenshot

[image: ../_images/ex_splitter.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of the `Splitter` widget.

A `Splitter` is a widget which can hold an arbitrary number of children
which must be instances of `Container`. The `Splitter` will separate
each `Container` with a bar which can be dragged by the user to change
the space allocated to the containers. This example shows how complex
arrangements can be acheived by nesting `Splitter` widgets inside
child `Container` widgets.

Implementation notes:

 The splitter support on Wx is poor. Certain behaviors, like initial
 splitter sizing does not work well (if at all). If a production
 application requires splitter support, prefer the Qt backend over
 Wx (this is generally a good life-rule).

<< autodoc-me >>
"""
from enaml.widgets.api import (
 Splitter, SplitItem, Form, Container, Window, Label, Field, Html,
)

enamldef MyForm(Form):
 Label:
 text = "First name:"
 Field:
 pass
 Label:
 text = "Last name:"
 Field:
 pass
 Label:
 text = "Address:"
 Field:
 pass
 Label:
 text = ""
 Field:
 pass
 Label:
 text = "City:"
 Field:
 pass
 Label:
 text = "State:"
 Field:
 pass
 Label:
 text = "Postal Code:"
 Field:
 pass
 Label:
 text = "Country:"
 Field:
 pass

enamldef MyHtmlWidgets(Container):
 padding = 0
 Splitter:
 orientation = 'vertical'
 SplitItem:
 Container:
 Html:
 resist_height = 'weak'
 source = '<center><h1>Hello World!</h1></center>'
 SplitItem:
 Container:
 Html:
 resist_height = 'weak'
 source = '<center><h1>Hello Enaml!</h1></center>'

enamldef Main(Window):
 Container:
 padding = 0
 Splitter:
 SplitItem:
 stretch = 0
 collapsible = False
 MyForm:
 pass
 SplitItem:
 MyForm:
 pass
 SplitItem:
 stretch = 2
 MyHtmlWidgets:
 pass
 SplitItem:
 MyForm:
 pass

 Tool Bar Example

Tool Bar Example

An example of the ToolBar widget.

This example demonstrates the use of the ToolBar widget. A ToolBar
can have an arbitrary number of children, which must be Action widgets.
In this fashion, a ToolBar is very similar to a Menu in a MenuBar.
The ToolBar also supports ActionGroup widgets in the same manner as
a Menu. A ToolBar is typically used as a child of a MainWindow,
but it can also used as a child of a Container and layed out using
constraints.

Implementation Notes:

The tool bar facilities in Wx are very weak. Due to technical
limitations, the ToolBar widget in Wx does not have the slick
docking features which are available in Qt. It also does not
look nice when used as the child of a Container. If a ToolBar
is required for a particular application, strongly prefer the
Qt backend over Wx (this is generally a good life-rule).

Tip

To see this example in action, download it from
tool_bar
and run:

$ enaml-run tool_bar.enaml

Screenshot

[image: ../_images/ex_tool_bar.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of the `ToolBar` widget.

This example demonstrates the use of the `ToolBar` widget. A `ToolBar`
can have an arbitrary number of children, which must be `Action` widgets.
In this fashion, a `ToolBar` is very similar to a `Menu` in a `MenuBar`.
The `ToolBar` also supports `ActionGroup` widgets in the same manner as
a `Menu`. A `ToolBar` is typically used as a child of a `MainWindow`,
but it can also used as a child of a `Container` and layed out using
constraints.

Implementation Notes:

 The tool bar facilities in Wx are very weak. Due to technical
 limitations, the `ToolBar` widget in Wx does not have the slick
 docking features which are available in Qt. It also does not
 look nice when used as the child of a `Container`. If a `ToolBar`
 is required for a particular application, strongly prefer the
 Qt backend over Wx (this is generally a good life-rule).

<< autodoc-me >>
"""
from __future__ import print_function
from enaml.layout.api import vbox
from enaml.widgets.api import (
 MainWindow, ToolBar, Action, ActionGroup, Container, Html
)

enamldef MyToolBar(ToolBar):
 Action:
 text = 'Button'
 tool_tip = text
 ActionGroup:
 Action:
 separator = True
 Action:
 checkable = True
 text = 'Exclusive'
 triggered :: print('triggered')
 toggled :: print('toggled')
 Action:
 checkable = True
 text = 'ToolBar'
 Action:
 checkable = True
 text = 'Buttons'
 Action:
 separator = True
 Action:
 checkable = True
 text = 'Checkable'
 Action:
 checkable = True
 text = 'ToolBar'
 Action:
 checkable = True
 text = 'Buttons'

enamldef Main(MainWindow):
 MyToolBar:
 pass
 Container:
 constraints = [vbox(html, tbar, spacing=0)]
 Html: html:
 source = '<h1><center>Hello World!</center></h1>'
 MyToolBar: tbar:
 pass

 Tool Buttons Example

Tool Buttons Example

An example demonstrating the use of ToolBar buttons.

This example shows how ToolBar buttons can be used both as children of
a ToolBar and as regular widgets in a Container. It also demonstrates
adding a menu to a ToolButton along with the various modes for
configuring popup behavior.

Tip

To see this example in action, download it from
tool_buttons
and run:

$ enaml-run tool_buttons.enaml

Screenshot

[image: ../_images/ex_tool_buttons.png]

Example Enaml Code

#--
Copyright (c) 2014, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example demonstrating the use of ToolBar buttons.

This example shows how ToolBar buttons can be used both as children of
a ToolBar and as regular widgets in a Container. It also demonstrates
adding a menu to a ToolButton along with the various modes for
configuring popup behavior.

<< autodoc-me >>
"""
import os

from enaml.icon import Icon, IconImage
from enaml.image import Image
from enaml.layout.api import hbox, vbox
from enaml.widgets.api import (
	MainWindow, Container, ToolBar, ToolButton, Menu, Action, Html, Field
)

def load_icon(name):
	dirname = os.path.dirname(__file__)
	fname = os.path.join(dirname, 'images', '%s.png' % name)
	with open(fname, 'rb') as f:
		data = f.read()
	img = Image(data=data)
	icg = IconImage(image=img)
	return Icon(images=[icg])

NEW_ICON = load_icon('document-new')
OPEN_ICON = load_icon('document-open')
SETTINGS_ICON = load_icon('emblem-system')
ADD_ICON = load_icon('list-add')
REMOVE_ICON = load_icon('list-remove')
SEARCH_ICON = load_icon('system-search')
BACK_ICON = load_icon('go-previous')

enamldef Main(MainWindow):
	title = 'Tool Buttons'
	ToolBar:
		ToolButton:
			text = 'New'
			icon = NEW_ICON
			button_style = 'text_beside_icon'
			popup_mode = 'button'
			Menu:
				Action:
					text = 'File'
				Action:
					text = 'Directory'
				Action:
					text = 'Share'
		Action:
			text = 'Open'
			icon = OPEN_ICON
		Action:
			separator = True
		Action:
			text = 'Settings'
			icon = SETTINGS_ICON
		Action:
			text = 'Add'
			icon = ADD_ICON
		Action:
			text = 'Remove'
			icon = REMOVE_ICON
	Container:
		constraints = [vbox(hbox(back, 1, field, 1, search), html)]
		ToolButton: back:
			text = 'Back'
			icon = BACK_ICON
			Menu:
				Action:
					text = 'First'
				Action:
					text = 'Second'
				Action:
					text = 'Third'
		ToolButton: search:
			text = 'Search'
			icon = SEARCH_ICON
			popup_mode = 'instant'
			Menu:
				Action:
					text = 'Google'
				Action:
					text = 'Bing'
				Action:
					text = 'Yahoo'
		Field: field:
			placeholder = 'Search...'
		Html: html:
			source = '<h1><center>Hello</center></h1>'

 V Group Example

V Group Example

An example of the VGroup convenience container.

The VGroup is a convenience container which provides a simple vertical
group of child widgets, with knobs to control inter-widget spacing and
leading and trailing spacers.

Tip

To see this example in action, download it from
v_group
and run:

$ enaml-run v_group.enaml

Screenshot

[image: ../_images/ex_v_group.png]

Example Enaml Code

#--
Copyright (c) 2014, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of the `VGroup` convenience container.

The VGroup is a convenience container which provides a simple vertical
group of child widgets, with knobs to control inter-widget spacing and
leading and trailing spacers.

<< autodoc-me >>
"""
from enaml.layout.api import spacer
from enaml.widgets.api import (
 Window, Label, Separator, Field, Form, VGroup, CheckBox, SpinBox
)

enamldef Main(Window):
 title = 'VGroup'
 VGroup:
 padding = 0
 spacing = 0
 Form:
 Label:
 text = 'Leading Spacer'
 CheckBox: lsp:
 checked = False
 Label:
 text = 'Trailing Spacer'
 CheckBox: rsp:
 checked = False
 Label:
 text = 'Spacing'
 SpinBox: spin:
 value = 10
 Separator:
 pass
 VGroup:
 leading_spacer << spacer(0) if lsp.checked else None
 trailing_spacer << spacer(0) if rsp.checked else None
 spacing << spin.value
 Field:
 pass
 Field:
 pass
 Field:
 pass
 Field:
 pass

 Vtk Canvas Example

Vtk Canvas Example

An example of the VTKCanvas widget.

Requires vtk to be installed.

Tip

To see this example in action, download it from
vtk_canvas
and run:

$ enaml-run vtk_canvas.enaml

Screenshot

[image: ../_images/ex_vtk_canvas.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of the `VTKCanvas` widget.

Requires vtk to be installed.

<< autodoc-me >>
"""
from enaml.widgets.api import Window, Container, VTKCanvas

import vtk

def create_renderer():
 quadric = vtk.vtkQuadric()
 quadric.SetCoefficients(.5, 1, .2, 0, .1, 0, 0, .2, 0, 0)

 sample = vtk.vtkSampleFunction()
 sample.SetSampleDimensions(50, 50, 50)
 sample.SetImplicitFunction(quadric)

 contours = vtk.vtkContourFilter()
 contours.SetInputConnection(sample.GetOutputPort())
 contours.GenerateValues(5, 0.0, 1.2)

 contour_mapper = vtk.vtkPolyDataMapper()
 contour_mapper.SetInputConnection(contours.GetOutputPort())
 contour_mapper.SetScalarRange(0.0, 1.2)

 contour_actor = vtk.vtkActor()
 contour_actor.SetMapper(contour_mapper)

 outline = vtk.vtkOutlineFilter()
 outline.SetInputConnection(sample.GetOutputPort())

 outline_mapper = vtk.vtkPolyDataMapper()
 outline_mapper.SetInputConnection(outline.GetOutputPort())

 outline_actor = vtk.vtkActor()
 outline_actor.SetMapper(outline_mapper)
 outline_actor.GetProperty().SetColor(0, 0, 0)

 renderer = vtk.vtkRenderer()
 renderer.AddActor(contour_actor)
 renderer.AddActor(outline_actor)
 renderer.SetBackground(.75, .75, .75)

 return renderer

enamldef Main(Window):
 title = 'VTK Canvas'
 Container:
 padding = 0
 VTKCanvas:
 renderer = create_renderer()

 Window Example

Window Example

The ‘Hello World’ of Gui examples.

This example shows how to create a bare bones window with a title. For
this simple example, the Window has no children.

Tip

To see this example in action, download it from
window
and run:

$ enaml-run window.enaml

Screenshot

[image: ../_images/ex_window.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" The 'Hello World' of Gui examples.

This example shows how to create a bare bones window with a title. For
this simple example, the `Window` has no children.

<< autodoc-me >>
"""
from enaml.widgets.api import Window

enamldef Main(Window):
 title = 'Hello World!'

 Window Children Example

Window Children Example

An example of using children with a Window widget.

The Window widget serves as the fundamental top level widget for UIs
in Enaml. Window widgets may have at most one child widget which must
be an instance of Container. This Container is referred to as the
‘central widget’ of the UI. The sizing behavior of a Window is largely
determined by the sizing constraints of the central widget.

In this example, we use a Container and a few PushButton widgets to
add content to the Window. Clicking on the first PushButton will
print the central widget of the window to the shell.

This example focuses on features of the Window widget, see the other
examples for explanations of the other widgets and language features.

Tip

To see this example in action, download it from
window_children
and run:

$ enaml-run window_children.enaml

Screenshot

[image: ../_images/ex_window_children.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of using children with a `Window` widget.

The `Window` widget serves as the fundamental top level widget for UIs
in Enaml. `Window` widgets may have at most one child widget which must
be an instance of `Container`. This `Container` is referred to as the
'central widget' of the UI. The sizing behavior of a `Window` is largely
determined by the sizing constraints of the central widget.

In this example, we use a `Container` and a few `PushButton` widgets to
add content to the `Window`. Clicking on the first `PushButton` will
print the central widget of the window to the shell.

This example focuses on features of the `Window` widget, see the other
examples for explanations of the other widgets and language features.

<< autodoc-me >>
"""
from __future__ import print_function
from enaml.widgets.api import Window, Container, PushButton

enamldef Main(Window): main:
 title = 'Hello World!'
 Container:
 PushButton:
 text = 'Foo'
 clicked :: print(main.central_widget())
 PushButton:
 text = 'Bar'
 PushButton:
 text = 'Baz'

 Align Example

Align Example

An example which demonstrates the use of the align layout helper.

In this example, we use the align layout helper to align various
constraints of the children of a container. The layout consists of
a Field pinned to the top of the Container. Below the Field are two
PushButtons each of which have their left boundary aligned. The
top PushButton is then aligned with the h_center of the Field.

Tip

To see this example in action, download it from
align
and run:

$ enaml-run align.enaml

Screenshot

[image: ../_images/ex_align.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example which demonstrates the use of the `align` layout helper.

In this example, we use the `align` layout helper to align various
constraints of the children of a container. The layout consists of
a Field pinned to the top of the Container. Below the Field are two
PushButtons each of which have their `left` boundary aligned. The
top PushButton is then aligned with the `h_center` of the Field.

<< autodoc-me >>
"""
from enaml.layout.api import align
from enaml.widgets.api import Window, Container, Field, PushButton

enamldef Main(Window):
 Container:
 constraints = [
 # Align the left edges of both PushButtons.
 align('left', pb1, pb2),

 # Align the top button with the center of the field.
 align('h_center', fld, pb1),

 # Pin the Field to the top of the Container. This is
 # orthogonal to the use of `align` for this example,
 # but is needed to have a well constrained system.
 contents_top == fld.top, contents_left == fld.left,
 contents_right == fld.right,

 # Setup the vertical constraints for the widgets. This is
 # orthogonal to the use of `align` for this example, but
 # is needed to have a well constrained system.
 fld.bottom + 10 == pb1.top, pb1.bottom + 10 == pb2.top,
 pb2.bottom <= contents_bottom,
]
 Field: fld:
 pass
 PushButton: pb1:
 text = 'Long Name Foo'
 PushButton: pb2:
 text = 'Bar'

 Align Offset Example

Align Offset Example

An example of the align layout helper with inter-element offsets.

This is example is nearly identical to the align.enaml example. This
example adds to the other by showing how the align layout helper
accepts spacing offsets for its layout items.

Tip

To see this example in action, download it from
align_offset
and run:

$ enaml-run align_offset.enaml

Screenshot

[image: ../_images/ex_align_offset.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of the `align` layout helper with inter-element offsets.

This is example is nearly identical to the `align.enaml` example. This
example adds to the other by showing how the `align` layout helper
accepts spacing offsets for its layout items.

<< autodoc-me >>
"""
from enaml.layout.api import align
from enaml.widgets.api import Window, Container, Field, PushButton

enamldef Main(Window):
 Container:
 constraints = [
 # Align the left edges of both PushButtons with a relative
 # offset between them.
 align('left', pb1, 20, pb2),

 # Align the top button with the center of the field with
 # a relative offset between them.
 align('h_center', fld, 50, pb1),

 # Pin the Field to the top of the Container. This is
 # orthogonal to the use of `align` for this example,
 # but is needed to have a well constrained system.
 contents_top == fld.top, contents_left == fld.left,
 contents_right == fld.right,

 # Setup the vertical constraints for the widgets. This is
 # orthogonal to the use of `align` for this example, but
 # is needed to have a well constrained system.
 fld.bottom + 10 == pb1.top, pb1.bottom + 10 == pb2.top,
 pb2.bottom <= contents_bottom,
]
 Field: fld:
 pass
 PushButton: pb1:
 text = 'Long Name Foo'
 PushButton: pb2:
 text = 'Bar'

 Grid Example

Grid Example

An example which demonstrates the use of the grid layout helper.

In this example, we use the grid layout helper to layout the children
of the Container in a grid arrangment. Similar to the vbox and hbox
functions, the grid function will automatically take into account the
the content boundaries of its parent and provides the necessary layout
spacers to arrange things nicely.

The grid function allows items to span multiple cells by assigning the
same item to multiple cells. No checks are performed to ensure an item
spans a contiguous cell block. Instead, items will span the smallest
rectangular cell block which encloses all of its locations. Empty cells
are defined by using None as the cell item.

Inter-row and inter-column spacing of the grid is controlled with the
row_spacing and column_spacing keyword arguments both of which
default to 10.

Addition row and and column alignment constraints can be supplied with
the row_align and column_align keyword arguments. These are strings
which are supplied to the align layout helper for the items in a given
row or column. However, these constraints are only applied to items which
span a single row or column, respectively.

Tip

To see this example in action, download it from
grid
and run:

$ enaml-run grid.enaml

Screenshot

[image: ../_images/ex_grid.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example which demonstrates the use of the `grid` layout helper.

In this example, we use the `grid` layout helper to layout the children
of the Container in a grid arrangment. Similar to the `vbox` and `hbox`
functions, the `grid` function will automatically take into account the
the content boundaries of its parent and provides the necessary layout
spacers to arrange things nicely.

The `grid` function allows items to span multiple cells by assigning the
same item to multiple cells. No checks are performed to ensure an item
spans a continugous cell block. Instead, items will span the smallest
rectangular cell block which encloses all of its locations. Empty cells
are defined by using `None` as the cell item.

Inter-row and inter-column spacing of the grid is controlled with the
`row_spacing` and `column_spacing` keyword arguments both of which
default to 10.

Addition row and and column alignment constraints can be supplied with
the `row_align` and `column_align` keyword arguments. These are strings
which are supplied to the `align` layout helper for the items in a given
row or column. However, these constraints are only applied to items which
span a single row or column, respectively.

<< autodoc-me >>
"""
from enaml.layout.api import grid
from enaml.widgets.api import Window, Container, PushButton, Label, Field, Html

enamldef Main(Window):
 Container:
 constraints = [
 grid(
 [pb1, fld1, pb5],
 [pb2, lbl, pb6],
 [pb3, lbl, pb7],
 [pb4, fld2, pb8],
 [html, html, html],
 column_align='width',
 row_align='v_center',
),
]
 PushButton: pb1:
 text = 'Spam'
 PushButton: pb2:
 text = 'Long Name Foo'
 PushButton: pb3:
 text = 'Bar'
 PushButton: pb4:
 text = 'Eggs'
 PushButton: pb5:
 text = 'Ham'
 PushButton: pb6:
 text = 'Green'
 PushButton: pb7:
 text = 'Blue'
 PushButton: pb8:
 text = 'Red'
 Field: fld1:
 pass
 Field: fld2:
 pass
 Label: lbl:
 text = 'A somewhat long\nLabel which spans\n2 rows and 1 column'
 align = 'center'
 hug_height = 'weak'
 Html: html:
 source = '<h1><center>This spans the entire bottom row!</center></h1>'

 Hbox Example

Hbox Example

An example which demonstrates the use of the hbox layout helper.

In this example, we use the hbox layout helper to layout the children
of the Container in a horizontal group. The hbox function is a fairly
sophisticated layout helper which automatically takes into account the
content boundaries of its parent. It also provides the necessary layout
spacers in the vertical direction to allow for children of various
heights.

In this example, all widgets have same native height so there is no need
for extra alignment constraints in the vertical direction. PushButtons
expand freely in width by default, so when the Window is expanded, one
of the PushButtons will be expanded to fill. The particular PushButton
which is chosen to expand is nondeterministic. To force are particular
choice would require extra constraints to be defined on the buttons.
That extra specification is deliberately omitted in this example.

Tip

To see this example in action, download it from
hbox
and run:

$ enaml-run hbox.enaml

Screenshot

[image: ../_images/ex_hbox.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example which demonstrates the use of the `hbox` layout helper.

In this example, we use the `hbox` layout helper to layout the children
of the Container in a horizontal group. The `hbox` function is a fairly
sophisticated layout helper which automatically takes into account the
content boundaries of its parent. It also provides the necessary layout
spacers in the vertical direction to allow for children of various
heights.

In this example, all widgets have same native height so there is no need
for extra alignment constraints in the vertical direction. PushButtons
expand freely in width by default, so when the Window is expanded, one
of the PushButtons will be expanded to fill. The particular PushButton
which is chosen to expand is nondeterministic. To force are particular
choice would require extra constraints to be defined on the buttons.
That extra specification is deliberately omitted in this example.

<< autodoc-me >>
"""
from enaml.layout.api import hbox
from enaml.widgets.api import Window, Container, PushButton

enamldef Main(Window):
 Container:
 constraints = [
 hbox(pb1, pb2, pb3)
]
 PushButton: pb1:
 text = 'Spam'
 PushButton: pb2:
 text = 'Long Name Foo'
 PushButton: pb3:
 text = 'Bar'

 Hbox Equal Widths Example

Hbox Equal Widths Example

An example of the hbox layout helper with auxiliary constraints.

This example is nearly identical to the hbox.enaml example. However,
this time we add some auxiliary constraints to make the buttons equal
widths. When resizing the window, each button is therefore guaranteed
to expand by the same amount.

Tip

To see this example in action, download it from
hbox_equal_widths
and run:

$ enaml-run hbox_equal_widths.enaml

Screenshot

[image: ../_images/ex_hbox_equal_widths.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of the `hbox` layout helper with auxiliary constraints.

This example is nearly identical to the `hbox.enaml` example. However,
this time we add some auxiliary constraints to make the buttons equal
widths. When resizing the window, each button is therefore guaranteed
to expand by the same amount.

<< autodoc-me >>
"""
from enaml.layout.api import hbox
from enaml.widgets.api import Window, Container, PushButton

enamldef Main(Window):
 Container:
 constraints = [
 hbox(pb1, pb2, pb3),
 pb1.width == pb2.width,
 pb2.width == pb3.width,
]
 PushButton: pb1:
 text = 'Spam'
 PushButton: pb2:
 text = 'Long Name Foo'
 PushButton: pb3:
 text = 'Bar'

 Hbox Spacing Example

Hbox Spacing Example

An example of the hbox layout helper with inter-element spacing.

This example is nearly identical to the hbox.enaml example. However,
this time we change the default inter-element spacing from 10 to 30.

Tip

To see this example in action, download it from
hbox_spacing
and run:

$ enaml-run hbox_spacing.enaml

Screenshot

[image: ../_images/ex_hbox_spacing.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of the `hbox` layout helper with inter-element spacing.

This example is nearly identical to the `hbox.enaml` example. However,
this time we change the default inter-element spacing from 10 to 30.

<< autodoc-me >>
"""
from enaml.layout.api import hbox
from enaml.widgets.api import Window, Container, PushButton

enamldef Main(Window):
 Container:
 constraints = [
 hbox(pb1, pb2, pb3, spacing=30)
]
 PushButton: pb1:
 text = 'Spam'
 PushButton: pb2:
 text = 'Long Name Foo'
 PushButton: pb3:
 text = 'Bar'

 Horizontal Example

Horizontal Example

An example of the horizontal layout helper.

This example uses the horizontal layout helper to arrange a series of
PushButton widgets in a horizontal layout. No constraints are placed
on the vertical position of the PushButton widgets so their vertical
location in this example is non-deterministic.

Tip

To see this example in action, download it from
horizontal
and run:

$ enaml-run horizontal.enaml

Screenshot

[image: ../_images/ex_horizontal.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of the `horizontal` layout helper.

This example uses the `horizontal` layout helper to arrange a series of
`PushButton` widgets in a horizontal layout. No constraints are placed
on the vertical position of the `PushButton` widgets so their vertical
location in this example is non-deterministic.

<< autodoc-me >>
"""
from enaml.layout.api import horizontal
from enaml.widgets.api import Window, Container, PushButton

enamldef Main(Window):
 Container:
 constraints = [
 horizontal(left, pb1, pb2, pb3, right),
]
 PushButton: pb1:
 text = 'Spam'
 PushButton: pb2:
 text = 'Long Name Foo'
 PushButton: pb3:
 text = 'Bar'

 Linear Relations Example

Linear Relations Example

An example which demonstrates linear relational constraints.

This example shows how one may define a constraint as a linear relation
of some other constraint. In this example, the horizontal position and
width of a PushButton depends up the width of the Container, and the
vertical position of another PushButton depends upon the width of the
other PushButton.

This is a contrieved example, but serves to demonstrate the feature.

Tip

To see this example in action, download it from
linear_relations
and run:

$ enaml-run linear_relations.enaml

Screenshot

[image: ../_images/ex_linear_relations.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example which demonstrates linear relational constraints.

This example shows how one may define a constraint as a linear relation
of some other constraint. In this example, the horizontal position and
width of a `PushButton` depends up the width of the `Container`, and the
vertical position of another `PushButton` depends upon the width of the
other `PushButton`.

This is a contrieved example, but serves to demonstrate the feature.

<< autodoc-me >>
"""
from enaml.widgets.api import Window, Container, PushButton

enamldef Main(Window):
 Container:
 constraints = [
 # Pin the first push button to the top contents anchor.
 pb1.top == contents_top,

 # Relate the left side of the push button to the width
 # of the container.
 pb1.left == 0.3 * width,

 # Relate the width of the push button to the width of
 # the container
 pb1.width == 0.5 * width,

 # Pin the second push button to the left contents anchor.
 pb2.left == contents_left,

 # Relate the top of the push button to width of the first
 # push button.
 pb2.top == 0.3 * pb1.width + 10
]
 PushButton: pb1:
 text = 'Horizontal'
 PushButton: pb2:
 text = 'Long Name Foo'

 Vbox Example

Vbox Example

An example which demonstrates the use of the vbox layout helper.

In this example, we use the vbox layout helper to layout the children
of the Container in a vertical group. The vbox function is a fairly
sophisticated layout helper which automatically takes into account the
content boundaries of its parent. It also provides the necessary layout
spacers in the horizontal direction to allow for children of various
widths.

Tip

To see this example in action, download it from
vbox
and run:

$ enaml-run vbox.enaml

Screenshot

[image: ../_images/ex_vbox.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example which demonstrates the use of the `vbox` layout helper.

In this example, we use the `vbox` layout helper to layout the children
of the Container in a vertical group. The `vbox` function is a fairly
sophisticated layout helper which automatically takes into account the
content boundaries of its parent. It also provides the necessary layout
spacers in the horizontal direction to allow for children of various
widths.

<< autodoc-me >>
"""
from enaml.layout.api import vbox
from enaml.widgets.api import Window, Container, PushButton

enamldef Main(Window):
 Container:
 constraints = [
 vbox(pb1, pb2, pb3)
]
 PushButton: pb1:
 text = 'Spam'
 PushButton: pb2:
 text = 'Long Name Foo'
 PushButton: pb3:
 text = 'Bar'

 Vertical Example

Vertical Example

An example of the vertical layout helper.

This example uses the vertical layout helper to arrange a series of
PushButton widgets in a vertical layout. No constraints are placed
on the horizontal position of the PushButton widgets so their
horizontal location in this example is non-deterministic.

Tip

To see this example in action, download it from
vertical
and run:

$ enaml-run vertical.enaml

Screenshot

[image: ../_images/ex_vertical.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of the `vertical` layout helper.

This example uses the `vertical` layout helper to arrange a series of
`PushButton` widgets in a vertical layout. No constraints are placed
on the horizontal position of the `PushButton` widgets so their
horizontal location in this example is non-deterministic.

<< autodoc-me >>
"""
from enaml.layout.api import vertical
from enaml.widgets.api import Window, Container, PushButton

enamldef Main(Window):
 Container:
 constraints = [
 vertical(top, pb1, pb2, pb3, bottom)
]
 PushButton: pb1:
 text = 'Spam'
 PushButton: pb2:
 text = 'Long Name Foo'
 PushButton: pb3:
 text = 'Bar'

 Button Ring Example

Button Ring Example

An example layout which is impossible with typical layout systems.

This example creates a ring of 50 PushButton widgets with a Label in
the center. The constraints shown here are generally silly in that the
resulting layout is more-or-less useless. Nevertheless, it serves well to
demonstrate the power and flexibility of constraints-based layout.

Note that the ‘gen_constraints’ function is only called once, not on
every resize as may be expected when laying out widgets manually.

Note that this example also demonstrates that constraints may be defined
on any subclass of ConstraintsWidget. They need not be confined to a
Container.

Requires numpy to be installed.

Tip

To see this example in action, download it from
button_ring
and run:

$ enaml-run button_ring.enaml

Screenshot

[image: ../_images/ex_button_ring.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example layout which is impossible with typical layout systems.

This example creates a ring of 50 `PushButton` widgets with a `Label` in
the center. The constraints shown here are generally silly in that the
resulting layout is more-or-less useless. Nevertheless, it serves well to
demonstrate the power and flexibility of constraints-based layout.

Note that the 'gen_constraints' function is only called once, not on
every resize as may be expected when laying out widgets manually.

Note that this example also demonstrates that constraints may be defined
on any subclass of `ConstraintsWidget`. They need not be confined to a
`Container`.

Requires numpy to be installed.

<< autodoc-me >>
"""
from __future__ import print_function
import numpy as np
from enaml.widgets.api import MainWindow, Container, PushButton, Label
from enaml.core.include import Include

def gen_constraints(comps, top, left, width, height):
 """ A helper function which generates radial constraints.

 Parameters

 comps : list
 A list of ConstraintWidget instances which should be arrange
 radially over an intervale of 2-Pi.

 top : ConstraintVariable
 The variable representing the top of the layout area.

 left : ConstraintVariable
 The variable representing the left of the layout area.

 width : ConstraintVariable
 The variable representing the width of the layout area.

 height : ConstraintVariable
 The variable representing the height of the layout area.

 Returns

 result : list
 The list of primitive constraints which arrange the given
 components radially in the layout area.

 """
 res = []
 nitems = len(comps)
 rads = np.linspace(0, 2 * np.pi, nitems)
 x_coeffs = (np.cos(rads) + 1.0) / 2.0
 y_coeffs = (np.sin(rads) + 1.0) / 2.0
 for comp, x_coeff, y_coeff in zip(comps, x_coeffs, y_coeffs):
 res.extend([
 comp.left == (left + x_coeff * (width - comp.width)),
 comp.top == (top + y_coeff * (height - comp.height)),
])
 return res

enamldef SimpleButton(PushButton):
 """ A custom `PushButton` for use in the button ring example.

 The width and height of this `PushButton` is fixed to its size hint.
 This is required since no other constraints are placed on the width
 of the button in this example. If these constraints were not added,
 then the constraints solver would error with an unbounded system,
 indicating an underconstrained system.

 """
 hug_width = 'required'
 hug_height = 'required'
 clicked :: print('%s clicked' % text)

enamldef Main(MainWindow):
 Container: cntr:
 constraints << gen_constraints(
 inc.objects, top, left, width, height,
) + [width >= 200, height >= 200]
 Include: inc:
 objects = [SimpleButton(text=str(i)) for i in range(50)]
 Label: lbl:
 # Constraints can also be directly defined on a component.
 # This is provided as a convenience where it makes the code
 # clearer and easier to understand. It makes no difference
 # if the constraints are defined here, or on the Container.
 constraints = [
 v_center == cntr.v_center,
 h_center == cntr.h_center,
]
 text = 'Button Ring'
 font = 'italic small-caps bold expanded 12pt arial'

 Factory Func Example

Factory Func Example

An example of using a factory function to generate constraints.

This example shows how a function can be used as a delegate for generating
the list of layout constraints. This mode of constraint generation is useful
when the children of a container change dynamically at runtime. The factory
will be invoked automatically whenever the internal layout engine determines
that a relayout is necessary.

Tip

To see this example in action, download it from
factory_func
and run:

$ enaml-run factory_func.enaml

Screenshot

[image: ../_images/ex_factory_func.png]

Example Enaml Code

#--
Copyright (c) 2014-2018, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of using a factory function to generate constraints.

This example shows how a function can be used as a delegate for generating
the list of layout constraints. This mode of constraint generation is useful
when the children of a container change dynamically at runtime. The factory
will be invoked automatically whenever the internal layout engine determines
that a relayout is necessary.

<< autodoc-me >>
"""
from itertools import zip_longest

from enaml.core.api import Include
from enaml.layout.api import align, grid, factory
from enaml.widgets.api import Window, Container, Form, Field, Label, SpinBox

def generate_grid(container, num_cols):
 """ Generate grid constraints with given number of columns.

 """
 rows = []
 widgets = container.visible_widgets()
 row_iters = (iter(widgets),) * num_cols
 rows = list(zip_longest(*row_iters))
 return [grid(*rows), align('width', *widgets)]

enamldef Main(Window):
 title = 'Factory Helper'
 Container:
 padding = 0
 Form:
 Label:
 text = 'Widget Count'
 SpinBox: w_count:
 value = 4
 Label:
 text = 'Column Count'
 SpinBox: c_count:
 value = 2
 minimum = 1
 maximum = 5
 Container:
 # The << operator is only needed for the subscription to
 # the column count. The factory is automatically invoked
 # whenever the number of children of the container change.
 constraints << [factory(generate_grid, c_count.value)]
 Include:
 objects << [Field(text=str(i)) for i in range(w_count.value)]

 Find Replace Example

Find Replace Example

An example demonstrating the layout for a find-replace dialog.

To make the buttons look nice, weak constraints are set requesting that
the adjacent buttons have the same width after satisfying all of the
other constraints. The left border of the Fields should be aligned. The
width taken up by the buttons is controlled by the lower row since the
PushButton labels “Replace” and “Replace & Find” take up more space than
“Find” and “Find Next”. The lower row’s buttons are not equal widths,
because that would take up a bunch of extra space, but the top row’s
buttons do expand equally to take up the available space.

Tip

To see this example in action, download it from
find_replace
and run:

$ enaml-run find_replace.enaml

Screenshot

[image: ../_images/ex_find_replace.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example demonstrating the layout for a find-replace dialog.

To make the buttons look nice, weak constraints are set requesting that
the adjacent buttons have the same width after satisfying all of the
other constraints. The left border of the Fields should be aligned. The
width taken up by the buttons is controlled by the lower row since the
PushButton labels "Replace" and "Replace & Find" take up more space than
"Find" and "Find Next". The lower row's buttons are not equal widths,
because that would take up a bunch of extra space, but the top row's
buttons do expand equally to take up the available space.

<< autodoc-me >>
"""
from enaml.layout.api import hbox, vbox, spacer, align
from enaml.widgets.api import Window, Container, PushButton, Field

enamldef Main(Window):
 title = "Find & Replace"
 Container:
 constraints = [
 vbox(
 hbox(find, find_next, find_field),
 hbox(replace, replace_and_find, replace_field),
),

 # Setup the alignment of the left of the two fields
 align('left', find_field, replace_field),

 # Setup the vertical aligment of each row of controls
 align('v_center', find, find_next, find_field),
 align('v_center', replace, replace_and_find, replace_field),

 # Setup the weak width constraints of each control
 (find.width == find_next.width) | 'weak',
 (replace.width == replace_and_find.width) | 'weak',
]
 PushButton: find:
 text = "Find"
 PushButton: find_next:
 text = "Find Next"
 PushButton: replace:
 text = "Replace"
 PushButton: replace_and_find:
 text = "Replace && Find"
 Field: find_field:
 pass
 Field: replace_field:
 pass

 Fluid Example

Fluid Example

An example of how constraints can be used to create fluid layouts.

At the top of the layout is an Html widget which expands to fill the
available space. Below the Html are four PushButton widgets. On the
left are the Add and Remove buttons, which hug the left side of the window
and stay close to each other. Hugging the bottom right corner is the Share
PushButton. Centered is the Change Mode PushButton. However, as the
window gets resized, the Change Mode button may not be able to be centered,
but it will always leave a gap between it and its two neighbors. This
type of behavior (selective centering) is difficult-if-not-impossible to
acheive with traditional box style layouts.

Tip

To see this example in action, download it from
fluid
and run:

$ enaml-run fluid.enaml

Screenshot

[image: ../_images/ex_fluid.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of how constraints can be used to create fluid layouts.

At the top of the layout is an `Html` widget which expands to fill the
available space. Below the `Html` are four `PushButton` widgets. On the
left are the Add and Remove buttons, which hug the left side of the window
and stay close to each other. Hugging the bottom right corner is the Share
`PushButton`. Centered is the Change Mode `PushButton`. However, as the
window gets resized, the Change Mode button may not be able to be centered,
but it will always leave a gap between it and its two neighbors. This
type of behavior (selective centering) is difficult-if-not-impossible to
acheive with traditional box style layouts.

<< autodoc-me >>
"""
from __future__ import print_function
from enaml.layout.api import hbox, vbox, spacer, align
from enaml.widgets.api import Window, Html, Container, PushButton

enamldef Main(Window):
 Container:
 constraints = [
 # Arrange the Html Frame above the horizontal row of butttons
 vbox(
 html_frame,
 hbox(
 add_button, remove_button, spacer,
 change_mode_button, spacer, share_button,
),
),

 # Weakly align the centers of the Html frame and the center
 # button. Declaring this constraint as 'weak' is what allows
 # the button to ignore the constraint as he window is resized
 # too small to allow it to be centered.
 align('h_center', html_frame, change_mode_button) | 'weak',

 # Set a sensible minimum height for the frame
 html_frame.height >= 150,
]
 Html: html_frame:
 source = '<center><h1>Hello Enaml!</h1></center>'
 PushButton: add_button:
 text = 'Add'
 PushButton: remove_button:
 text = 'Remove'
 clicked :: print('removed')
 PushButton: change_mode_button:
 text = 'Change Mode'
 PushButton: share_button:
 text = 'Share...'

 Manual Hbox Example

Manual Hbox Example

An example which demonstrates the manual specification of an hbox.

This example demonstrates how one would manually define the constraints
for an hbox style layout. In fact, the hbox layout helper generates
the primitive constraints in a fashion very similar to this example.
The intent of this example is to demonstrate that all of the layout
helper functions can be distilled down to a list of primitive
constraints.

Tip

To see this example in action, download it from
manual_hbox
and run:

$ enaml-run manual_hbox.enaml

Screenshot

[image: ../_images/ex_manual_hbox.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example which demonstrates the manual specification of an `hbox`.

This example demonstrates how one would manually define the constraints
for an `hbox` style layout. In fact, the `hbox` layout helper generates
the primitive constraints in a fashion very similar to this example.
The intent of this example is to demonstrate that all of the layout
helper functions can be distilled down to a list of primitive
constraints.

<< autodoc-me >>
"""
from enaml.widgets.api import Window, Container, PushButton

enamldef Main(Window):
 Container:
 constraints = [
 # Horizontal Constraints
 contents_left == pb1.left,
 pb1.right + 10 == pb2.left,
 pb2.right + 10 == pb3.left,
 pb3.right == contents_right,
 # Vertical Constraints
 (contents_top == pb1.top) | 'medium',
 (contents_top == pb2.top) | 'medium',
 (contents_top == pb3.top) | 'medium',
 (pb1.bottom == contents_bottom) | 'medium',
 (pb2.bottom == contents_bottom) | 'medium',
 (pb3.bottom == contents_bottom) | 'medium',
]
 PushButton: pb1:
 text = 'Spam'
 PushButton: pb2:
 text = 'Long Name Foo'
 PushButton: pb3:
 text = 'Bar'

 Manual Vbox Example

Manual Vbox Example

An example which demonstrates the manual specification of a vbox.

This example demonstrates how one would manually define the constraints
for a vbox style layout. In fact, the vbox layout helper generates
the primitive constraints in a fashion very similar to this example.
The intent of this example is to demonstrate that all of the layout
helper functions can be distilled down to a list of primitive
constraints.

Tip

To see this example in action, download it from
manual_vbox
and run:

$ enaml-run manual_vbox.enaml

Screenshot

[image: ../_images/ex_manual_vbox.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example which demonstrates the manual specification of a `vbox`.

This example demonstrates how one would manually define the constraints
for a `vbox` style layout. In fact, the `vbox` layout helper generates
the primitive constraints in a fashion very similar to this example.
The intent of this example is to demonstrate that all of the layout
helper functions can be distilled down to a list of primitive
constraints.

<< autodoc-me >>
"""
from enaml.widgets.api import Window, Container, PushButton

enamldef Main(Window):
 Container:
 constraints = [
 # Vertical Constraints
 contents_top == pb1.top,
 pb1.bottom + 10 == pb2.top,
 pb2.bottom + 10 == pb3.top,
 pb3.bottom == contents_bottom,
 # Horizontal Constraints
 (contents_left == pb1.left) | 'medium',
 (contents_left == pb2.left) | 'medium',
 (contents_left == pb3.left) | 'medium',
 (pb1.right == contents_right) | 'medium',
 (pb2.right == contents_right) | 'medium',
 (pb3.right == contents_right) | 'medium',
]
 PushButton: pb1:
 text = 'Spam'
 PushButton: pb2:
 text = 'Long Name Foo'
 PushButton: pb3:
 text = 'Bar'

 Mpl Canvas Size Example

Mpl Canvas Size Example

An example of how to override tolkit-supplied size hints on your widget.

The toolkit-supplied size hint for MPLCanvas is 480 x 640 pixels, which
prevents you from sizing the canvas smaller. This can be a problem when you are
presenting a large grid of Matplotlib figures.

This example demonstrates how to override the tookit-supplied size hint for
MPLCanvas. By setting resist_width, resist_height, hug_height, and hug_width to
‘ignore’, you can resize the figure almost freely in any direction.

This serves to demonstrate how the resist, hug and limit constraints interact
to control the size of a widget.

	resist:
	If “strong”, the widget will not shrink smaller than the preferred size
(i.e., the constraint width >= width_hint or height >= height_hint is
set on the object).

	hug:
	If “strong”, the widget will not change from the preferred size (i.e., the
constraint width == width_hint or height == height_hint is set on the
object).

	limit:
	If “strong”, the widget will not expand larger than the preferred size
(i.e., the constraint width <= width_hint and height <= height_hint is
set on the object).

To allow a MPLCanvas to shrink smaller than the default size but not expand
larger:

resist = ignore or weak
hug = ignore or weak
limit = strong

To allow a MPLCanvas to expand larger than the default size but not shrink
smaller:

resist = strong
hug = ignore or weak
limit = ignore or weak

To disallow a MPLCanvas to change in size:

resist = strong, ignore or weak
hug = strong
limit = strong, ignore or weak

Tip

To see this example in action, download it from
mpl_canvas_size
and run:

$ enaml-run mpl_canvas_size.enaml

Screenshot

[image: ../_images/ex_mpl_canvas_size.png]

Example Enaml Code

#--
Copyright (c) 2022, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of how to override tolkit-supplied size hints on your widget.

The toolkit-supplied size hint for MPLCanvas is 480 x 640 pixels, which
prevents you from sizing the canvas smaller. This can be a problem when you are
presenting a large grid of Matplotlib figures.

This example demonstrates how to override the tookit-supplied size hint for
MPLCanvas. By setting resist_width, resist_height, hug_height, and hug_width to
'ignore', you can resize the figure almost freely in any direction.

This serves to demonstrate how the resist, hug and limit constraints interact
to control the size of a widget.

resist:
 If "strong", the widget will not shrink smaller than the preferred size
 (i.e., the constraint `width >= width_hint` or `height >= height_hint` is
 set on the object).

hug:
 If "strong", the widget will not change from the preferred size (i.e., the
 constraint `width == width_hint` or `height == height_hint` is set on the
 object).

limit:
 If "strong", the widget will not expand larger than the preferred size
 (i.e., the constraint `width <= width_hint` and `height <= height_hint` is
 set on the object).

To allow a MPLCanvas to shrink smaller than the default size but not expand
larger:

 resist = ignore or weak
 hug = ignore or weak
 limit = strong

To allow a MPLCanvas to expand larger than the default size but not shrink
smaller:

 resist = strong
 hug = ignore or weak
 limit = ignore or weak

To disallow a MPLCanvas to change in size:

 resist = strong, ignore or weak
 hug = strong
 limit = strong, ignore or weak

<< autodoc-me >>
"""

import matplotlib.pyplot as plt
import numpy as np

from enaml.widgets.api import (Form, Label, MPLCanvas, ObjectCombo, VGroup,
 Window)

def make_figure():
 # Constrained layout uses the kiwisolver engine and will ensure that the
 # axes are formatted properly regardless of the size of the figure.
 figure, axes = plt.subplots(constrained_layout=True)
 x = np.arange(1000) / 1000
 y = np.sin(2 * np.pi * 5 * x)
 axes.plot(x, y)
 return figure

enamldef Main(Window):

 Form:
 Label:
 text = 'resist_height and resist_width'

 ObjectCombo: resist:
 items = ['strong', 'weak', 'ignore']

 Label:
 text = 'hug_height and hug_width'

 ObjectCombo: hug:
 items = ['strong', 'weak', 'ignore']

 Label:
 text = 'limit_height and limit_width'

 ObjectCombo: limit:
 items = ['strong', 'weak', 'ignore']

 MPLCanvas: canvas:
 resist_width << resist.selected
 resist_height << resist.selected
 hug_width << hug.selected
 hug_height << hug.selected
 limit_width << limit.selected
 limit_height << limit.selected

 # This specifies the minimum possible size for the window.
 constraints = [(width >= 100) | 'strong', (height >= 100) | 'strong']
 figure = make_figure()

 Nested Boxes Example

Nested Boxes Example

An example of how the hbox and vbox layout helpers can be nested.

The layout in this example is not necessarily one that would be used
in a production application. However, it serves to demonstrate the idea
that the hbox and vbox layout helpers can be arbitrarily nested.

Tip

To see this example in action, download it from
nested_boxes
and run:

$ enaml-run nested_boxes.enaml

Screenshot

[image: ../_images/ex_nested_boxes.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of how the `hbox` and `vbox` layout helpers can be nested.

The layout in this example is not necessarily one that would be used
in a production application. However, it serves to demonstrate the idea
that the `hbox` and `vbox` layout helpers can be arbitrarily nested.

<< autodoc-me >>
"""
from enaml.layout.api import vbox, hbox, align, spacer
from enaml.widgets.api import Window, Container, Label, PushButton

enamldef Main(Window):
 Container:
 constraints = [
 vbox(
 lbl_a,
 lbl_b,
 hbox(lbl_c, spacer, lbl_d, spacer, lbl_e),
 hbox(spacer, lbl_f, lbl_g),
 hbox(btn_1, spacer, btn_2, spacer, btn_3)),
 align('h_center', self, lbl_d, btn_2),
]
 Label: lbl_a:
 text = "Label A"
 Label: lbl_b:
 text = "Label B"
 Label: lbl_c:
 text = "Label C"
 Label: lbl_d:
 text = "Label D"
 Label: lbl_e:
 text = "Label E"
 Label: lbl_f:
 text = "Label F"
 Label: lbl_g:
 text = "Label G"
 PushButton: btn_1:
 text = "Button 1"
 PushButton: btn_2:
 text = "Button 2"
 PushButton: btn_3:
 text = "Button 3"

 Nested Containers Example

Nested Containers Example

An example showing the unified layout across nested Containers.

There are three Containers under the window, two sharing space on top and
one taking up the entire horizontal space on the bottom. The two on top
simply consist of a Label and a Field. The Container on the left is
constrained to be slightly larger than the other by a constant multiplier.

The Container on the bottom contains the more complicated example from
fluid.enaml to demonstrate that a complicated layout works inside
a nested Container, too.

Tip

To see this example in action, download it from
nested_containers
and run:

$ enaml-run nested_containers.enaml

Screenshot

[image: ../_images/ex_nested_containers.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example showing the unified layout across nested Containers.

There are three Containers under the window, two sharing space on top and
one taking up the entire horizontal space on the bottom. The two on top
simply consist of a Label and a Field. The Container on the left is
constrained to be slightly larger than the other by a constant multiplier.

The Container on the bottom contains the more complicated example from
`fluid.enaml` to demonstrate that a complicated layout works inside
a nested Container, too.

<< autodoc-me >>
"""
from enaml.layout.api import hbox, vbox, spacer, align
from enaml.widgets.api import Window, Html, Container, PushButton, Label, Field

enamldef LabeledField(Container):
 attr label_text: str = 'Label'
 constraints = [
 hbox(label, field),
 align('v_center', label, field)
]
 Label: label:
 text = label_text
 Field: field:
 resist_width = 'weak'

enamldef Main(Window):
 title = "Nested Containers"
 Container:
 padding = 5
 constraints = [
 vbox(
 hbox(top_left_cntr, top_right_cntr), 0,
 bottom_cntr,
),
 top_left_cntr.width == 1.4 * top_right_cntr.width,
]
 LabeledField: top_left_cntr:
 label_text = "Left:"
 LabeledField: top_right_cntr:
 label_text = "Right:"
 Container: bottom_cntr:
 constraints = [
 vbox(
 html_frame,
 hbox(
 add_button, remove_button, spacer,
 change_mode_button, spacer, share_button,
),
),
 align('h_center', html_frame, change_mode_button) | 'weak',
 html_frame.height >= 150,
]
 resist_width = 'weak'
 Html: html_frame:
 source = '<center><h1>Hello Enaml!</h1></center>'
 PushButton: add_button:
 text = 'Add'
 PushButton: remove_button:
 text = 'Remove'
 PushButton: change_mode_button:
 text = 'Change Mode'
 PushButton: share_button:
 text = 'Share...'

 Override Layout Constraints Example

Override Layout Constraints Example

An example which demonstrates overriding layout_constraints.

This example shows how one can override layout_constraints method from
enaml syntax to generate custom constraints using procedural code. This
can be useful for complex layout scenarios where generating constraints
from a single expression would be difficult or impossible.

Tip

To see this example in action, download it from
override_layout_constraints
and run:

$ enaml-run override_layout_constraints.enaml

Screenshot

[image: ../_images/ex_override_layout_constraints.png]

Example Enaml Code

#--
Copyright (c) 2015, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example which demonstrates overriding `layout_constraints`.

This example shows how one can override `layout_constraints` method from
enaml syntax to generate custom constraints using procedural code. This
can be useful for complex layout scenarios where generating constraints
from a single expression would be difficult or impossible.

<< autodoc-me >>
"""
from itertools import zip_longest

from enaml.layout.api import align, grid
from enaml.widgets.api import Window, Container, Field, Label, PushButton

enamldef Main(Window):
 title = 'Custom Constraints'
 Container:
 layout_constraints => ():
 rows = []
 widgets = self.visible_widgets()
 row_iters = (iter(widgets),) * 2
 rows = list(zip_longest(*row_iters))
 return [grid(*rows)] + [align('v_center', *row) for row in rows]
 Label:
 text = 'Name'
 Field:
 pass
 Label:
 text = 'Surname'
 Field:
 pass
 PushButton:
 text = 'Click me'

 Centered Grid Example

Centered Grid Example

An example of how to express constraints with respect to helpers attributes

The layour in this example illustrates how to access and use the attributes of
helpers to complex layouts. All helpers expose the same attributes (left,
right, top, bottom, width, height, h_center, v_center) as any widget.

Tip

To see this example in action, download it from
centered_grid
and run:

$ enaml-run centered_grid.enaml

Screenshot

[image: ../_images/ex_centered_grid.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of how to express constraints with respect to helpers attributes

The layour in this example illustrates how to access and use the attributes of
helpers to complex layouts. All helpers expose the same attributes (left,
right, top, bottom, width, height, h_center, v_center) as any widget.

<< autodoc-me >>
"""
from enaml.layout.api import grid, hbox, spacer, align
from enaml.widgets.api import Window, Container, Label, PushButton

enamldef Main(Window):
 Container:
 layout_constraints => ():
 g = grid((lbl_a, lbl_b, lbl_c),
 (lbl_d, lbl_e, lbl_f),
 (lbl_g, lbl_g, lbl_g),
 (btn_1, btn_2, btn_3))
 constraints = [hbox(spacer,g, spacer) ,
 align('h_center', g, contents_h_center)
]
 return constraints
 Label: lbl_a:
 text = "Label A"
 Label: lbl_b:
 text = "Label B"
 Label: lbl_c:
 text = "Label C"
 Label: lbl_d:
 text = "Label D"
 Label: lbl_e:
 text = "Label E"
 Label: lbl_f:
 text = "Label F"
 Label: lbl_g:
 text = "Label G"
 PushButton: btn_1:
 text = "Button 1"
 PushButton: btn_2:
 text = "Button 2"
 PushButton: btn_3:
 text = "Button 3"

 Mapped View Example

Mapped View Example

An example of using the Enaml stdlib MappedView component.

The MappedView is an enamldef subtype of the Include type which will
automatically create a view for an object based on it’s type and a given
typemap. See the documentation for MappedView for a full description.

In this example, a simple class hierarchy is created. For each type in
the hierararchy, a custom view is created. These views are provided as
a typemap to a MappedView so that when a given object is selected, the
proper view is displayed.

Tip

To see this example in action, download it from
mapped_view
and run:

$ enaml-run mapped_view.enaml

Screenshot

[image: ../_images/ex_mapped_view.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of using the Enaml stdlib `MappedView` component.

The `MappedView` is an enamldef subtype of the `Include` type which will
automatically create a view for an object based on it's type and a given
typemap. See the documentation for `MappedView` for a full description.

In this example, a simple class hierarchy is created. For each type in
the hierararchy, a custom view is created. These views are provided as
a typemap to a `MappedView` so that when a given object is selected, the
proper view is displayed.

<< autodoc-me >>
"""
from atom.api import Atom, Str, Int, List, Range, Value, observe

from enaml.layout.api import vbox
from enaml.stdlib.mapped_view import MappedView
from enaml.widgets.api import (
 Window, Form, Field, SpinBox, Label, ObjectCombo, Container
)

class Base(Atom):
 name = Str()

class Foo(Base):
 a = Int()
 b = Int()
 c = Int()

class Bar(Base):
 d = Str()
 e = Str()
 f = Str()
 g = Str()

enamldef BaseView(Form):
 attr model: Base
 Label:
 text = 'Name'
 Label:
 hug_width = 'ignore'
 align = 'center'
 text << model.name

enamldef FooView(BaseView):
 attr model: Foo
 Label:
 text = 'a'
 SpinBox:
 value := model.a
 Label:
 text = 'b'
 SpinBox:
 value := model.b
 Label:
 text = 'c'
 SpinBox:
 value := model.c

enamldef BarView(BaseView):
 attr model: Bar
 Label:
 text = 'd'
 Field:
 text := model.d
 Label:
 text = 'e'
 Field:
 text := model.e
 Label:
 text = 'f'
 Field:
 text := model.f
 Label:
 text = 'g'
 Field:
 text := model.g

class Model(Atom):

 objects = List(Base)

enamldef Main(Window):
 attr main_model = Model(objects=[
 Base(name='Base'), Foo(name='Foo'), Bar(name='Bar')
])
 Container:
 ObjectCombo: combo:
 items << main_model.objects
 to_string = lambda obj: obj.name
 MappedView:
 model << combo.selected
 typemap = {Base: BaseView, Foo: FooView, Bar: BarView}

 Message Box Example

Message Box Example

An example of using the Enaml stdlib MessageBox.

The MessageBox element is built on top of the stdlib task dialog elements.
See the task_dialog example for a demonstration of those elements.

This example shows how to use the MessageBox directly along with various
convenience functions which are available for 1-line notifications.

Tip

To see this example in action, download it from
message_box
and run:

$ enaml-run message_box.enaml

Screenshot

[image: ../_images/ex_message_box.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of using the Enaml stdlib MessageBox.

The MessageBox element is built on top of the stdlib task dialog elements.
See the `task_dialog` example for a demonstration of those elements.

This example shows how to use the MessageBox directly along with various
convenience functions which are available for 1-line notifications.

<< autodoc-me >>
"""
from __future__ import print_function
import sys
if sys.platform == 'win32':
 from enaml import winutil

from enaml.image import Image
from enaml.stdlib.dialog_buttons import DialogButton
from enaml.stdlib.message_box import (MessageBox, about, critical, information,
 question, warning)
from enaml.widgets.api import Container, PushButton, Window

def h_result(button):
 if button is not None:
 print("Dialog button '%s' clicked." % button.text)

enamldef Main(Window):
 title = 'Message Box Example'
 Container:
 PushButton:
 text = 'About'
 clicked :: about(self, 'About Dialog', 'This is about text.')
 PushButton:
 text = 'Critical'
 clicked ::
 btns = [DialogButton('Custom', 'accept'),
 DialogButton('Buttons', 'reject')]
 h_result(critical(
 self, 'Critical Dialog', 'This is critical text.', btns))
 PushButton:
 text = 'Information'
 clicked ::
 h_result(information(
 self, 'Info Dialog', 'This is info text.'))
 PushButton:
 text = 'Question'
 clicked ::
 h_result(question(
 self, 'Question Dialog', 'This is question text.'))
 PushButton:
 text = 'Warning'
 clicked ::
 h_result(warning(
 self, 'Warning Dialog', 'This is warning text.'))
 PushButton:
 text = 'Custom'
 clicked ::
 box = MessageBox()
 box.title = 'Custom Dialog'
 box.text = 'This is custom text.'
 box.content = 'This is some more content.'
 box.details = '<h3>These are some details.</h3>'
 box.buttons = [DialogButton('Accept', 'accept'),
 DialogButton('Reject', 'reject')]
 if sys.platform == 'win32':
 data, size = winutil.load_icon(winutil.OIC_INFORMATION)
 box.image = Image(data=data, raw_size=size, format='argb32')
 box.set_parent(self)
 box.exec_()
 for b in box.buttons:
 if b.was_clicked:
 h_result(b)

 Task Dialog Example

Task Dialog Example

An example of using the Enaml stdlib task dialog components.

The task_dialog stdlib module provides a set of components which can be
easily assembled for a dialog which follows the style of the Windows 7/8
task dialogs.

A task dialog is assembled by declaring a TaskDialogBody element as the
child of a Dialog. Within the body, the various special dialog area
containers can be declared to add content to the dialog. The dialog body
takes care of automatically laying the various areas.

This example creates a Dialog which uses all of the task dialog areas,
which is not a requirement for user code. In fact, all of the areas are
optional, and the developer is free to choose the bits needed for the
task at hand.

Creating a task dialog from scratch using the area elements is flexible,
but can be a bit tedious. For the more common use cases, Enaml provides
some predefined task dialogs. See message_box.enaml for an example.

Tip

To see this example in action, download it from
task_dialog
and run:

$ enaml-run task_dialog.enaml

Screenshot

[image: ../_images/ex_task_dialog.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of using the Enaml stdlib task dialog components.

The `task_dialog` stdlib module provides a set of components which can be
easily assembled for a dialog which follows the style of the Windows 7/8
task dialogs.

A task dialog is assembled by declaring a `TaskDialogBody` element as the
child of a `Dialog`. Within the body, the various special dialog area
containers can be declared to add content to the dialog. The dialog body
takes care of automatically laying the various areas.

This example creates a Dialog which uses all of the task dialog areas,
which is not a requirement for user code. In fact, all of the areas are
optional, and the developer is free to choose the bits needed for the
task at hand.

Creating a task dialog from scratch using the area elements is flexible,
but can be a bit tedious. For the more common use cases, Enaml provides
some predefined task dialogs. See `message_box.enaml` for an example.

<< autodoc-me >>
"""
import sys
if sys.platform == 'win32':
 from enaml import winutil

from enaml.image import Image
from enaml.layout.api import align, hbox, spacer
from enaml.stdlib.dialog_buttons import DialogButtonBox, DialogButton
from enaml.stdlib.task_dialog import (TaskDialogBody, TaskDialogCommandArea,
 TaskDialogContentArea, TaskDialogDetailsArea, TaskDialogFootnoteArea,
 TaskDialogIconArea, TaskDialogInstructionArea, TaskDialogStyleSheet)
from enaml.widgets.api import (CheckBox, Container, Dialog, Field, Label,
 ImageView, PushButton, RadioButton, Window)

template IconContent(Platform):
 Label:
 text = 'Icon Area'

template IconContent(Platform: 'win32'):
 const ico = winutil.load_icon(winutil.OIC_INFORMATION)
 const img = Image(data=ico[0], raw_size=ico[1], format='argb32')
 ImageView:
 image = img
 hug_height = 'strong'
 hug_width = 'strong'

enamldef MyTaskDialog(Dialog):
 title = 'A Task Dialog'
 TaskDialogStyleSheet:
 pass
 TaskDialogBody:
 TaskDialogIconArea:
 IconContent(sys.platform):
 pass
 TaskDialogInstructionArea:
 Label:
 style_class = 'task-dialog-instructions'
 text = 'The dialog instruction'
 TaskDialogContentArea:
 Label:
 style_class = 'task-dialog-content'
 text = 'This is some additional dialog content.'
 TaskDialogDetailsArea: details:
 visible = False
 RadioButton:
 text = 'these'
 RadioButton:
 text = 'are'
 RadioButton:
 text = 'more'
 RadioButton:
 text = 'options'
 TaskDialogCommandArea:
 constraints = [
 hbox(cbox, spacer, bbox),
 align('v_center', cbox, bbox),
]
 CheckBox: cbox:
 text = 'More options'
 checked := details.visible
 DialogButtonBox: bbox:
 buttons = [
 DialogButton('OK', 'accept'),
 DialogButton('Cancel', 'reject'),
]
 TaskDialogFootnoteArea:
 Label:
 text = 'This is a footnote. It could be any widget.'

enamldef Main(Window):
 title = 'Task Dialog Example'
 Container:
 PushButton:
 text = 'Launch Dialog'
 clicked :: MyTaskDialog(self).exec_()

 Conditional Example

Conditional Example

An example of using Conditional to generate the views.

This example shows how Conditional can be used to generate views for
objects which are not known until runtime.

Tip

To see this example in action, download it from
conditional
and run:

$ enaml-run conditional.enaml

Screenshot

[image: ../_images/ex_conditional.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of using Conditional to generate the views.

This example shows how Conditional can be used to generate views for
objects which are not known until runtime.

<< autodoc-me >>
"""
import random

from enaml.core.api import Conditional, Looper
from enaml.widgets.api import (
 Window, Container, Field, PushButton, CheckBox, Separator, ScrollArea
)

class Foo(object):
 text = 'foo'

class Bar(object):
 text = 'bar'

class Baz(object):
 text = 'baz'

enamldef FooView(Container):
 attr model: Foo
 PushButton: text = model.text
 PushButton: text = model.text
 PushButton: text = model.text

enamldef BarView(Container):
 attr model: Bar
 Field: text = model.text
 Field: text = model.text
 Field: text = model.text

enamldef BazView(Container):
 attr model: Baz
 CheckBox: text = model.text
 CheckBox: text = model.text
 CheckBox: text = model.text

CLASSES = [Foo, Bar, Baz]
def generate(n):
 return [random.choice(CLASSES)() for _ in range(n)]

enamldef Main(Window): main:
 attr models = generate(5)
 Container:
 CheckBox: show_bar:
 text = 'Show Bar Views'
 checked = True
 PushButton:
 text = 'Regenerate Models'
 clicked :: main.models = generate(random.randint(1, 10))
 ScrollArea:
 Container:
 Looper:
 iterable << models
 Conditional:
 condition = isinstance(loop.item, Foo)
 FooView:
 model = loop.item
 Conditional:
 condition << isinstance(loop.item, Bar) and show_bar.checked
 BarView:
 model = loop.item
 Conditional:
 condition = isinstance(loop.item, Baz)
 BazView:
 model = loop.item
 Conditional:
 condition << (
 (loop.index != len(main.models) - 1) and
 (show_bar.checked if isinstance(loop.item, Bar) else True)
)
 Separator:
 orientation = 'horizontal'

 Fields Example

Fields Example

An example of using Include to generate Field widgets on demand.

There are three columns in the example, each showing one of the many
ways that the Include component may be used.

Tip

To see this example in action, download it from
fields
and run:

$ enaml-run fields.enaml

Screenshot

[image: ../_images/ex_fields.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of using Include to generate Field widgets on demand.

There are three columns in the example, each showing one of the many
ways that the Include component may be used.

<< autodoc-me >>
"""
import random

from enaml.layout.api import hbox, vbox, align, spacer
from enaml.widgets.api import (
 Window, Container, Label, Field, SpinBox, PushButton, VGroup
)
from enaml.core.api import Include

enamldef Main(Window):
 Container:
 padding = 0
 constraints = [
 hbox(cont1, cont2, cont3),
 align('width', cont1, cont2, cont3)
]
 VGroup: cont1:
 trailing_spacer = spacer(0)
 Label:
 text = 'Replace All'
 align = 'center'
 SpinBox: spin1:
 minimum = 0
 maximum = 20
 value = 3
 Include:
 # This generates a completely new list of widgets each
 # time the spin box is changed. All the old widgets
 # will be destroyed. This is the simplest way to use
 # the Include, albeit not the most efficient.
 objects << [Field(text=str(i)) for i in range(spin1.value)]
 VGroup: cont2:
 trailing_spacer = spacer(0)
 Label:
 text = 'Random Shuffle'
 align = 'center'
 PushButton:
 text = 'Shuffle'
 # This randomly shuffles the Fields of the Include. It
 # could also have been done in-place to the same effect,
 # but we do it on a copy to demonstrate that the Include
 # is intelligent enought to deal with assigning it an
 # object or objects which it already owns.
 clicked ::
 new = list(inc2.objects)
 random.shuffle(new)
 inc2.objects = new
 cont2.request_relayout()
 Include: inc2:
 # The Fields are initialized with the spin box value.
 objects = [Field(text=str(i)) for i in range(10)]
 VGroup: cont3:
 trailing_spacer = spacer(0)
 Label:
 text = 'Modify In-Place'
 align = 'center'
 PushButton:
 text = 'Append'
 # This appends a new Field to the Include in-place.
 clicked ::
 n = len(inc3.objects)
 inc3.objects.append(Field(text=str(n)))
 PushButton:
 text = 'Pop'
 # This pops a Field from the Include in-place.
 clicked ::
 if inc3.objects:
 inc3.objects.pop()
 Include: inc3:
 objects = [Field(text=str(i)) for i in range(5)]

 Looper Example

Looper Example

An example of using Looper to generate widgets from an iterable.

Tip

To see this example in action, download it from
looper
and run:

$ enaml-run looper.enaml

Screenshot

[image: ../_images/ex_looper.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of using Looper to generate widgets from an iterable.

<< autodoc-me >>
"""
from __future__ import print_function
from enaml.core.api import Looper
from enaml.layout.api import vbox, hbox, align
from enaml.widgets.api import (
 Window, Container, Label, Field, PushButton, ScrollArea, Slider, Html,
)

enamldef Main(Window):
 Container:
 constraints = [
 vbox(
 hbox(label, field),
 button,
 scroller,
),
 align('v_center', label, field),
]
 Label: label:
 text = 'Items'
 Field: field:
 text = 'foo bar baz spam ham'
 PushButton: button:
 text = 'Print Items'
 clicked ::
 for item in looper.items:
 print(item)
 ScrollArea: scroller:
 Container:
 # Note that a Looper expects to iterate over unique values.
 # Passing duplicate values can lead to crashes.
 Looper: looper:
 iterable << field.text.split()
 Field:
 placeholder = 'Field %d: %s' % (loop.index, loop.item)
 PushButton:
 text = 'pb %s' % loop.index
 Slider:
 value :: print('Slider %d changed' % loop.index)
 Html:
 source << '<h1><center>%s</center></h1>' % loop.item

 Notebook Pages Example

Notebook Pages Example

An example of using dynamic notebook pages.

This example demonstrates using the Include component to dynamically
insert and remove pages from a notebook.

Tip

To see this example in action, download it from
notebook_pages
and run:

$ enaml-run notebook_pages.enaml

Screenshot

[image: ../_images/ex_notebook_pages.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of using dynamic notebook pages.

This example demonstrates using the `Include` component to dynamically
insert and remove pages from a notebook.

<< autodoc-me >>
"""
from enaml.core.api import Include
from enaml.layout.api import vbox, hbox, align, spacer
from enaml.widgets.api import (
 Window, Notebook, Page, Container, PushButton, Field, Html, CheckBox
)

enamldef ContentPage(Page):
 attr n: int
 closable = False
 Container:
 constraints = [
 vbox(
 hbox(pb, cb, fld),
 html,
),
 align('v_center', pb, cb, fld),
]
 PushButton: pb:
 text = 'Button'
 CheckBox: cb:
 text = 'Activate'
 Field: fld:
 pass
 Html: html:
 source = '<h1><center>Dynamic Page %d</center></h1>' % n

enamldef Main(Window): main:
 attr counter = 0
 Container:
 constraints = [
 vbox(
 hbox(show_st, hide_st, spacer, ins_dyn, rem_dyn),
 nbook,
),
]
 PushButton: show_st:
 text = 'Show Static Pages'
 clicked ::
 static1.show()
 static2.show()
 PushButton: hide_st:
 text = 'Hide Static Pages'
 clicked ::
 static2.hide()
 static1.hide()
 PushButton: ins_dyn:
 text = 'Insert Dynamic Page'
 clicked ::
 title = 'Dynamic Page %s' % main.counter
 page = ContentPage(n=main.counter, title=title)
 dyn_pages.objects.insert(0, page)
 main.counter += 1
 PushButton: rem_dyn:
 text = 'Remove Dynamic Page'
 clicked ::
 if dyn_pages.objects:
 dyn_pages.objects.pop()
 Notebook: nbook:
 tab_style = 'document'
 Page: static1:
 title = 'Static Page1'
 Container:
 padding = 0
 Html:
 source = '<h1><center>Static Page 1</center></h1>'
 Page: static2:
 title = 'Static Page2'
 Container:
 padding = 0
 Html:
 source = '<h1><center>Static Page 2</center></h1>'
 Include: dyn_pages:
 pass

 Chained Attribute Alias Example

Chained Attribute Alias Example

An example of using chained Enaml aliases.

This example is functionally equivalent to ‘chained_widget_alias.enaml’,
but it shows how the developer can exert more control over a widget by
exposing individual attributes instead of entire widgets.

Tip

To see this example in action, download it from
chained_attribute_alias
and run:

$ enaml-run chained_attribute_alias.enaml

Screenshot

[image: ../_images/ex_chained_attribute_alias.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of using chained Enaml aliases.

This example is functionally equivalent to 'chained_widget_alias.enaml',
but it shows how the developer can exert more control over a widget by
exposing individual attributes instead of entire widgets.

<< autodoc-me >>
"""
from enaml.widgets.api import Window, Container, Slider, Field, GroupBox

enamldef InternalBox(GroupBox):
 """ The internal content box.

 The slider is aliased via 'slider'.

 """
 alias slider
 title = 'Inner Box'
 Slider: slider:
 pass

enamldef OuterBox(GroupBox):
 """ The outer content box.

 The internal slider value is aliased via 'slider_value'.

 """
 alias slider_value: internal.slider.value
 title = 'Outer Box'
 InternalBox: internal:
 pass

enamldef Main(Window):
 """ The main application window.

 This window uses a chained alias to bind the inner slider of the
 group boxes to the other slider in the main window. It also uses
 a subscription on the chained alias to update a read only field.

 """
 title = 'Chained Attribute Alias'
 Container:
 OuterBox: outer:
 slider_value := slider.value
 Slider: slider:
 value = 50
 Field:
 read_only = True
 text << str(outer.slider_value)

 Chained Widget Alias Example

Chained Widget Alias Example

An example of using chained Enaml aliases.

Tip

To see this example in action, download it from
chained_widget_alias
and run:

$ enaml-run chained_widget_alias.enaml

Screenshot

[image: ../_images/ex_chained_widget_alias.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of using chained Enaml aliases.

<< autodoc-me >>
"""
from enaml.widgets.api import Window, Container, Slider, Field, GroupBox

enamldef InternalBox(GroupBox):
 """ The internal content box.

 The slider is aliased via 'slider'.

 """
 alias slider
 title = 'Inner Box'
 Slider: slider:
 pass

enamldef OuterBox(GroupBox):
 """ The outer content box.

 The internal content box is aliased via 'box'.

 """
 alias box: internal
 title = 'Outer Box'
 InternalBox: internal:
 pass

enamldef Main(Window):
 """ The main application window.

 This window uses a chained alias to bind the inner slider of the
 group boxes to the other slider in the main window. It also uses
 a subscription on the chained alias to update a read only field.

 """
 title = 'Chained Widget Alias'
 Container:
 OuterBox: outer:
 box.slider.value := slider.value
 Slider: slider:
 value = 50
 Field:
 read_only = True
 text << str(outer.box.slider.value)

 Simple Attribute Alias Example

Simple Attribute Alias Example

An example of using an Enaml alias to expose an internal attribute.

This example is similar to ‘simple_widget_alias.enaml’, but it shows
how the developer can exert more control over a widget by exposing
individual attributes instead of entire widgets.

Tip

To see this example in action, download it from
simple_attribute_alias
and run:

$ enaml-run simple_attribute_alias.enaml

Screenshot

[image: ../_images/ex_simple_attribute_alias.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of using an Enaml alias to expose an internal attribute.

This example is similar to 'simple_widget_alias.enaml', but it shows
how the developer can exert more control over a widget by exposing
individual attributes instead of entire widgets.

<< autodoc-me >>
"""
from enaml.widgets.api import Window, Container, PushButton

enamldef Content(Container):
 """ The primary application content.

 This 'button_foreground' alias provides access to the internal
 push button's foreground color.

 """
 alias button_foreground: button.foreground
 PushButton: button:
 text = 'Default Button Text'

enamldef Main(Window):
 """ The main application window.

 This window uses the 'button_foreground' alias of the central
 content to bind to its internal push button's foreground color.

 """
 title = 'Simple Attribute Alias'
 Content:
 button_foreground = 'blue'

 Simple Widget Alias Example

Simple Widget Alias Example

An example of using an Enaml alias to expose an internal widget.

Tip

To see this example in action, download it from
simple_widget_alias
and run:

$ enaml-run simple_widget_alias.enaml

Screenshot

[image: ../_images/ex_simple_widget_alias.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of using an Enaml alias to expose an internal widget.

<< autodoc-me >>
"""
from __future__ import print_function
from enaml.widgets.api import Window, Container, PushButton

enamldef Content(Container):
 """ The primary application content.

 This 'button' alias provides access to the internal push button.

 """
 alias button
 PushButton: button:
 text = 'Default Button Text'

enamldef Main(Window):
 """ The main application window.

 This window uses the 'button' alias of the central content to bind
 to its internal push button.

 """
 title = 'Simple Widget Alias'
 Content:
 button.text = 'Aliased Button'
 button.clicked :: print('Aliased Button clicked!')

 Declare Function Example

Declare Function Example

An example which demonstrates the use of the func keyword.

Code in the body of the function has access to the same scope as a bound
expression. This consists of an implicity self which resolves to the
object on which the function was declared, as well as the identifiers
declared in the enclosing enamldef block. It also has access to the
dynamic scope which is rooted on self.

Tip

To see this example in action, download it from
declare_function
and run:

$ enaml-run declare_function.enaml

Screenshot

[image: ../_images/ex_declare_function.png]

Example Enaml Code

#--
Copyright (c) 2015, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example which demonstrates the use of the `func` keyword.

Code in the body of the function has access to the same scope as a bound
expression. This consists of an implicity `self` which resolves to the
object on which the function was declared, as well as the identifiers
declared in the enclosing `enamldef` block. It also has access to the
dynamic scope which is rooted on `self`.

<< autodoc-me >>
"""
from __future__ import print_function
from collections.abc import Mapping
from enaml.widgets.api import Window, PushButton, SpinBox, Container
from enaml.core.funchelper import call_func

enamldef Main(Window): m:

 func do_thing(param):

 i = 0
 a = 1
 print({a: self for i in range(3)})
 print({m for m in range(1)})
 print([[i for i in range(1)] for i in range(2)])
 print([m for i in range(3) if i == m])
 print('Index', i)

 Container:
 SpinBox: sbox:
 maximum = 100
 minimum = 0
 PushButton:
 text = 'Click Me'
 clicked ::
 do_thing(1)
 print('Bis')
 print({a: self for i in range(3)})
 print({m for m in range(1)})
 print([[i for i in range(1)] for i in range(2)])
 print([m for i in range(3) if i == m])
 print('Index', i)

 Observe Model Signal Example

Observe Model Signal Example

An example which demonstrates how to observe a model signal.

This examples uses a model with a signal to notify listeners about in
place changes to a list. This pattern is interesting for the times when
a ContainerList would emit too many synchronous notifications. A common
example is reordering the elements in a list.

Tip

To see this example in action, download it from
observe_model_signal
and run:

$ enaml-run observe_model_signal.enaml

Screenshot

[image: ../_images/ex_observe_model_signal.png]

Example Enaml Code

#--
Copyright (c) 2015, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example which demonstrates how to observe a model signal.

This examples uses a model with a signal to notify listeners about in
place changes to a list. This pattern is interesting for the times when
a ContainerList would emit too many synchronous notifications. A common
example is reordering the elements in a list.

<< autodoc-me >>
"""
from atom.api import Atom, List, Signal, Str
from enaml.core.api import Looper
from enaml.widgets.api import Window, Form, PushButton, Field, Menu, Action

class Item(Atom):
 """Object to store in a list and display.

 """
 text = Str()

class Model(Atom):
 """ A model which manages a collection of values.

 This model expose a list which should be considered read-only and
 methods to manipulate it. The `values_changed` signal is emitted
 when an in-place change occurs in the list.

 """
 values = List(default=[Item(text='val')])

 values_changed = Signal()

 def add_value(self, index, val):
 """ Add a value at a specified index.

 """
 self.values.insert(index, val)
 self.values_changed('add')

 def move_value(self, old, new):
 """ Move a value from one index to another.

 """
 val = self.values.pop(old)
 self.values.insert(new, val)
 self.values_changed('moved')

 def delete_value(self, index):
 """ Delete a value.

 """
 del self.values[index]
 self.values_changed('deleted')

enamldef EditMenu(Menu):
 """ A menu used to edit the content of the list.

 The visible menu items will vary to show appropriate actions based
 on the current model state.

 """
 attr model: Model
 attr index: int
 Action:
 text = 'Add before'
 triggered :: model.add_value(index,
 Item(text='item %d' % len(model.values)))
 Action:
 text = 'Add after'
 triggered :: model.add_value(index + 1,
 Item(text='item %d' % len(model.values)))
 Action:
 separator = True
 Action:
 visible = index != 0
 text = 'Move up'
 triggered :: model.move_value(index, index - 1)
 Action:
 visible = index != len(model.values) - 1
 text = 'Move down'
 triggered :: model.move_value(index, index + 1)
 Action:
 separator = True
 Action:
 visible = len(model.values) > 1
 text = 'Delete'
 triggered :: model.delete_value(index)

enamldef Main(Window):
 """ The main window which displays the list contents as a form.

 """
 attr model = Model()
 attr _values = model.values[:]

 # Subscribe to the model when the window initializes.
 initialized :: model.observe('values_changed', on_changed)

 func on_changed(kind):
 self._values = model.values[:]

 func open_menu(item):
 EditMenu(model=model, index=_values.index(item)).popup()

 Form:
 # Note that a Looper expects to iterate over unique values. Passing
 # duplicate values can lead to crashes.
 Looper:
 iterable << _values
 PushButton:
 text = '>'
 constraints = [width == 15, height == 20]
 font = 'bold 12pt Consolas'
 clicked :: open_menu(loop.item)
 Field:
 read_only = True
 text = loop.item.text

 Override Function Example

Override Function Example

An which demonstrates a declarive function override.

This example demonstrates how to use the => operator to override a
declarative function defined with the @d_func decorator.

Tip

To see this example in action, download it from
override_function
and run:

$ enaml-run override_function.enaml

Screenshot

[image: ../_images/ex_override_function.png]

Example Enaml Code

#--
Copyright (c) 2015, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An which demonstrates a declarive function override.

This example demonstrates how to use the `=>` operator to override a
declarative function defined with the @d_func decorator.

<< autodoc-me >>
"""
from __future__ import print_function
from enaml.core.declarative import d_func
from enaml.widgets.api import Window, PushButton, Container

class MySpecialPushButton(PushButton):
 """ A push button which has something to say.

 """
 @d_func
 def say_something(self, name):
 msg = 'Hi, {}'
 print(msg.format(name))

enamldef Main(Window):
 attr name1 = 'John'
 attr name2 = 'Jane'
 Container:
 MySpecialPushButton:
 text = 'Say Hi'
 clicked :: self.say_something(name1)
 MySpecialPushButton:
 text = 'Say Hello'
 clicked :: self.say_something(name2)
 say_something => (name):
 print('Hello, '+ name)

 Banner Example

Banner Example

An example of using style sheets to create a banner from a Label.

Tip

To see this example in action, download it from
banner
and run:

$ enaml-run banner.enaml

Screenshot

[image: ../_images/ex_banner.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of using style sheets to create a banner from a Label.

<< autodoc-me >>
"""
from enaml.widgets.api import (
 Window, Container, Label, Form, Field, Html, MultilineField, CheckBox
)
from enaml.styling import StyleSheet, Style, Setter
from enaml.layout.api import vbox, hbox, align

enamldef BannerSheet(StyleSheet):
 Style:
 element = 'Label'
 style_class = 'banner'
 Setter:
 field = 'background'
 value = (
 'lineargradient(x1: 0, y1:0, x2:0, y2:1, stop: 0 #1356A9, '
 'stop: 0.3 #8AAFDC, stop: 0.58 #E0E4E0, stop: 0.68 #F8D8B1, '
 'stop: 0.848 #D39B8A, stop: 0.8499 #9C7F73, stop: 0.85 #D79F88, '
 'stop: 0.851 #E2BF9B, stop: 1 #817F73)'
)
 Setter:
 field = 'color'
 value = '#FFFFEF'
 Setter:
 field = 'padding'
 value = '5px'
 Setter:
 field = 'font'
 value = '18pt Verdana'

enamldef Main(Window):
 title = 'Banner Example'
 BannerSheet:
 pass
 Container:
 constraints = [
 vbox(hbox(form, description), primary),
 banner.top == top,
 banner.left == left,
 banner.right == right,
 banner.bottom + 10 == form.top,
 align('top', form, description),
]
 Label: banner:
 text = 'Banner Text'
 style_class << 'banner' if cbox.checked else ''
 Form: form:
 padding = 0
 hug_width = 'strong'
 hug_height = 'required'
 Label:
 text = 'First'
 Field:
 placeholder = 'First Value'
 Label:
 text = 'Second'
 Field:
 placeholder = 'Second Value'
 Label:
 text = 'Third'
 Field:
 placeholder = 'Third Value'
 Label:
 text = 'Fourth'
 Field:
 placeholder = 'Fourth Value'
 CheckBox: cbox:
 text = 'Toggle Banner Style'
 checked = True
 MultilineField: description:
 text = 'description...'
 enabled = False
 constraints = [height == form.height]
 Html: primary:
 source = '<h1><center>Primary Content</center></h1>'

 Dock Item Alerts Example

Dock Item Alerts Example

This example demonstrates the use of alerts on the DockItem widget.

The DockItem widget and related bits in the DockArea support a style
sheet pseudo-class named ‘alert’. This pseudo-class is very powerful in
that it allows the developer to provide their own arbitrary token to the
pseudo-class as an argument, and then apply that token to a dock item at
runtime. This gives the developer complete freedom over the how they style
their alerts, and does not force them in to a pre-defined hierarchy of
alert levels.

Tip

To see this example in action, download it from
dock_item_alerts
and run:

$ enaml-run dock_item_alerts.enaml

Screenshot

[image: ../_images/ex_dock_item_alerts.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" This example demonstrates the use of alerts on the DockItem widget.

The DockItem widget and related bits in the DockArea support a style
sheet pseudo-class named 'alert'. This pseudo-class is very powerful in
that it allows the developer to provide their own arbitrary token to the
pseudo-class as an argument, and then apply that token to a dock item at
runtime. This gives the developer complete freedom over the how they style
their alerts, and does not force them in to a pre-defined hierarchy of
alert levels.

<< autodoc-me >>
"""
from enaml.layout.api import (
 HSplitLayout, VSplitLayout, TabLayout, hbox, vbox, spacer
)
from enaml.styling import StyleSheet
from enaml.stdlib.dock_area_styles import (
 VS2010Style, TitleBarStyle, DockBarButtonStyle, ContainerStyle,
 ItemStyle, TabBarTabStyle, TitleBarLabelStyle
)
from enaml.widgets.api import (
 Window, Container, DockArea, DockItem, Html, Field, PushButton
)

HTML = """
<h3><center>
Drag the dock items to different locations to and then trigger an alert.
</center></h3>
"""

MELTDOWN_HTML = """
<h1><center>Everything is NOT okay!</center></h1>
"""

enamldef MyAlertStyleSheet(StyleSheet):

 # Include the base VS 2010 styling rules
 VS2010Style():
 pass

 # Add alert styles for an "important" alert.
 TitleBarStyle:
 pseudo_class = 'alert(important)'
 background = 'orange'

 TitleBarLabelStyle:
 pseudo_class = 'alert(important)'
 color = 'black'

 DockBarButtonStyle:
 pseudo_class = 'alert(important)'
 background = 'orange'

 TabBarTabStyle:
 pseudo_class = 'alert(important)'
 background = 'orange'

 # Add alert styles for an "information" alert.
 TitleBarStyle:
 pseudo_class = 'alert(information)'
 background = 'olivedrab'

 DockBarButtonStyle:
 pseudo_class = 'alert(information)'
 background = 'olivedrab'

 TabBarTabStyle:
 pseudo_class = 'alert(information)'
 background = 'olivedrab'

 # Add alert styles for a "meltdown" alert.
 TitleBarStyle:
 pseudo_class = 'alert(meltdown)'
 background = 'red'

 DockBarButtonStyle:
 pseudo_class = 'alert(meltdown)'
 background = 'red'

 TabBarTabStyle:
 pseudo_class = 'alert(meltdown)'
 background = 'red'

 ContainerStyle:
 pseudo_class = 'alert(meltdown)'
 background = 'yellow'

 ItemStyle:
 pseudo_class = 'alert(meltdown)'
 background = 'red'

enamldef DummyItem(DockItem):
 title = ' '.join(s.capitalize() for s in name.split('_'))
 Container:
 Field: pass
 Field: pass
 Field: pass
 Field: pass

enamldef Main(Window):
 title = 'Dock Item Alerts'
 MyAlertStyleSheet:
 pass
 Container:
 padding = 0
 DockArea:
 # A custom style sheet is being used, so the default style
 # sheet must be disabled - IMPORTANT!
 style = ''
 layout = HSplitLayout(
 VSplitLayout('controls', 'information'),
 VSplitLayout('important', 'meltdown'),
 TabLayout('dummy_1', 'dummy_2', 'dummy_3', 'dummy_4'),
)
 DockItem:
 title = 'Controls'
 name = 'controls'
 stretch = 0
 Container:
 PushButton:
 text = 'Information'
 clicked ::
 info_item.alert('information')
 PushButton:
 text = 'Important'
 clicked ::
 important_item.alert('important', persist=True)
 PushButton:
 text = 'Meltdown'
 clicked ::
 meltdown_item.alert(
 'meltdown', on=60, off=60, repeat=100
)
 DockItem: info_item:
 title = 'Information'
 name = 'information'
 stretch = 0
 Container:
 Field:
 placeholder = 'just'
 Field:
 placeholder = 'some'
 Field:
 placeholder = 'information'
 DockItem: important_item:
 title = 'Important Data'
 name = 'important'
 Container:
 Html:
 source = HTML
 DockItem: meltdown_item:
 title = 'Meltdown'
 name = 'meltdown'
 Container:
 Html:
 source = MELTDOWN_HTML
 DummyItem:
 name = 'dummy_1'
 DummyItem:
 name = 'dummy_2'
 DummyItem:
 name = 'dummy_3'
 DummyItem:
 name = 'dummy_4'

 Gradient Push Button Example

Gradient Push Button Example

An example of using style sheets to create a gradient PushButton.

Tip

To see this example in action, download it from
gradient_push_button
and run:

$ enaml-run gradient_push_button.enaml

Screenshot

[image: ../_images/ex_gradient_push_button.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of using style sheets to create a gradient PushButton.

<< autodoc-me >>
"""
from enaml.widgets.api import Window, Container, PushButton
from enaml.styling import StyleSheet, Style, Setter

enamldef GradientButtonSheet(StyleSheet):
 Style:
 element = 'PushButton'
 style_class = 'gradient-button'
 Setter:
 field = 'background'
 value = ('lineargradient(x1: 0, y1:0, x2:0, y2:1, '
 'stop: 0 #5CA9FA, stop: 0.49 #4790DE, '
 'stop: 0.50 #2C82DE, stop: 1 #045CBA)')
 Setter:
 field = 'border'
 value = '1px solid #034994'
 Setter:
 field = 'padding'
 value = '5px'
 Setter:
 field = 'color'
 value = 'white'
 Style:
 element = 'PushButton'
 style_class = 'gradient-button'
 pseudo_class = 'hover'
 Setter:
 field = 'border'
 value = '1px solid #007BFF'
 Style:
 element = 'PushButton'
 style_class = 'gradient-button'
 pseudo_class = 'pressed'
 Setter:
 field = 'background'
 value = ('lineargradient(x1: 0, y1:0, x2:0, y2:1, '
 'stop: 0 #166BC7, stop: 1 #2C82DE)')
 Style:
 style_class = 'large-font'
 Setter:
 field = 'font'
 value = '14pt Verdana'
 Style:
 style_class = 'rounded'
 Setter:
 field = 'border-radius'
 value = '5px'

enamldef Main(Window):
 title = 'Gradient Button'
 GradientButtonSheet:
 pass
 Container:
 PushButton:
 text = 'Gradient Button'
 style_class = 'gradient-button large-font'
 PushButton:
 text = 'Rounded Button'
 style_class = 'gradient-button large-font rounded'

 Advanced Example

Advanced Example

An advanced example of Enaml templates.

This example shows how Enaml templates can be used to automatically
generate the body of a form. Template specialization is used to select
the proper control for a model attribute at runtime. Template recursion
is then used to unroll a list of these controls into the body of a form.

Tip

To see this example in action, download it from
advanced
and run:

$ enaml-run advanced.enaml

Screenshot

[image: ../_images/ex_advanced.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An advanced example of Enaml templates.

This example shows how Enaml templates can be used to automatically
generate the body of a form. Template specialization is used to select
the proper control for a model attribute at runtime. Template recursion
is then used to unroll a list of these controls into the body of a form.

<< autodoc-me >>
"""
from __future__ import print_function
from atom.api import Atom, Bool, Enum, Event, Float, Int, Str

from enaml.core.api import DynamicTemplate
from enaml.stdlib.fields import FloatField
from enaml.widgets.api import (
 CheckBox, Container, Field, Form, GroupBox, Label, ObjectCombo, PushButton,
 SpinBox, Window,
)

#--
"Libaray" Definitions
#--
The templates and enamldefs defined in this section are ones which can
be written once and then used as a library. They are more-or-less fully
generic and will work for a large swath of models.

template FormControl(Attr, MemberType):
 """ A template which generates a control for an AutoForm.

 This default specialization displays read-only text for the value.

 Parameters

 Attr : str
 The name of the attribute on 'model' being accessed.

 MemberType : type
 The type of the member being accessed.

 """
 Field:
 read_only = True
 text << str(getattr(model, Attr))

template FormControl(Attr, MemberType: Int):
 """ A form control template specialization for Int members.

 This control uses a spin box to represent the value.

 """
 SpinBox:
 value := getattr(model, Attr)

template FormControl(Attr, MemberType: Str):
 """ A form control template specialization for Str members.

 This control uses a Field to represent the value.

 """
 Field:
 text := getattr(model, Attr)

template FormControl(Attr, MemberType: Float):
 """ A form control template specialization for Float members.

 This control uses a FloatField to represent the value.

 """
 FloatField:
 value := getattr(model, Attr)

template FormControl(Attr, MemberType: Bool):
 """ A form control template specialization for Bool members.

 This control uses a CheckBox to represent the value.

 """
 CheckBox:
 checked := getattr(model, Attr)

template FormControl(Attr, MemberType: Event):
 """ A form control template specialization for Event members.

 This control uses a PushButton to represent the value.

 """
 const ButtonText = Attr[0].upper() + Attr[1:].lower()
 PushButton:
 text = ButtonText
 clicked :: getattr(model, Attr)()

def enum_labels(model, attr):
 """ Return the list of enum labels for the given model and attr.

 """
 items = getattr(type(model), attr).items
 return sorted(items)

template FormControl(Attr, MemberType: Enum):
 """ A form control template specialization for Enum members.

 This control uses an ObjectCombo to represent the value.

 """
 ObjectCombo:
 items = enum_labels(model, Attr)
 selected := getattr(model, Attr)

template FormItem(Attr, MemberType):
 """ A template which generates a pair of items for an AutoForm.

 Parameters

 Attr : str
 The name of the attribute on 'model' being accessed.

 MemberType : type
 The type of the member being accessed.

 """
 const LabelText = Attr[0].upper() + Attr[1:].lower()
 Label:
 text = LabelText
 FormControl(Attr, MemberType):
 pass

def form_spec(obtype):
 """ Generate a form specification for an atom type.

 Parameters

 obtype : type
 The Atom subclass of interest.

 Returns

 result : tuple
 A tuple of 2-tuples of (attr, member_type) for all non-private
 members of the class.

 """
 items = []
 for name, member in obtype.members().items():
 if not name.startswith('_'):
 items.append((name, type(member)))
 items.sort()
 return tuple(items)

template ForEach(Spec, Item):
 """ A templated loop which maps a template over a sequence.

 Parameters

 Spec : tuple
 A tuple of tuples which are the values to map over the item.

 Item : template
 A template which accepts *values from inner tuples of the spec.

 """
 ForEach(Spec[:-1], Item):
 pass
 Item(*Spec[-1]):
 pass

template ForEach(Spec: (), Item):
 """ The terminating condition for the templated loop.

 """
 pass

template AutoFormBody(ModelType):
 """ A template which builds the body for an AutoForm.

 Parameters

 ModelType : type
 The type of the model. This should be an Atom subclass.

 """
 const Spec: tuple = form_spec(ModelType)
 ForEach(Spec, FormItem):
 pass

template AutoFormBody(ModelType: type(None)):
 """ A template specialization for null models.

 """
 pass

enamldef AutoForm(Form):
 """ A Form which automatically generates its body from a model.

 """
 attr model: Atom
 DynamicTemplate:
 base = AutoFormBody
 args = (type(model),)

#--
Main Models and Views
#--
class FooModel(Atom):
 spam = Int(34)
 ham = Int(42)
 first = Str('first')
 last = Str('last')
 owner = Str('owner')
 time = Float(42.56)
 click = Bool()
 clack = Bool()

class BarModel(Atom):
 name = Str('name')
 trigger = Event()
 choices = Enum('first', 'second', 'third')
 def _observe_trigger(self, change):
 print('I was triggered')

enamldef Main(Window):
 title = 'Advanced Templates'
 attr foo_model = FooModel()
 attr bar_model = BarModel()
 Container:
 GroupBox:
 title = 'Foo Model'
 flat = True
 AutoForm:
 padding = 0
 model = foo_model
 GroupBox:
 title = 'Bar Model'
 flat = True
 AutoForm:
 padding = 0
 model = bar_model

 Basic Example

Basic Example

A basic example of Enaml templates.

This example shows how Enaml templates can be used to define a control
“template” and then populate that template with user-defined widgets.

Tip

To see this example in action, download it from
basic
and run:

$ enaml-run basic.enaml

Screenshot

[image: ../_images/ex_basic.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" A basic example of Enaml templates.

This example shows how Enaml templates can be used to define a control
"template" and then populate that template with user-defined widgets.

<< autodoc-me >>
"""
from atom.api import Atom, Str

from enaml.layout.api import vbox, hbox, spacer
from enaml.widgets.api import Container, PushButton, Html, Window

template OkCancelPanel(Content):
 """ Create a container with Ok | Cancel buttons.

 The generated panel will contain Ok and Cancel buttons in the
 lower right-hand corner. The panel exposes two button clicked
 events named (appropriately) 'ok_clicked' and 'cancel_clicked'.
 The user provided widget is aliased as 'content'.

 Parameters

 Content : widget type
 A widget which will be used as the central content of the
 panel.

 """
 Container:
 alias content
 event ok_clicked
 event cancel_clicked
 constraints = [
 vbox(content, hbox(spacer, ok, cancel))
]
 Content: content:
 pass
 PushButton: ok:
 text = 'Ok'
 clicked :: ok_clicked()
 PushButton: cancel:
 text = 'Cancel'
 clicked :: cancel_clicked()

class SampleModel(Atom):
 """ A sample model which is used to bind data to the content.

 """
 #: The string to display in the content.
 text = Str()

enamldef SampleContent(Html):
 """ A sample widget used as the content of the button panel.

 """
 attr model: SampleModel
 source = "<h1><center>%s</center></h1>" % model.text

enamldef Main(Window):
 """ The main application window.

 This window uses a ButtonPanel instantiated with SampleContent
 as the central widget. The click handlers for the panel buttons
 are bound to print a message to the shell.

 """
 title = 'Basic Templates'
 OkCancelPanel(SampleContent): panel:
 panel.padding = 5
 panel.content.model = SampleModel(text='Hello Templates')
 panel.ok_clicked :: print('Ok clicked!')
 panel.cancel_clicked :: print('Cancel clicked!')

 Live Editor Example

Live Editor Example

An example of using the live editor applib components.

This examples shows how the various applib live editor components can be
stitched together to form a live Enaml code editor application.

Tip

To see this example in action, download it from
live_editor
and run:

$ enaml-run live_editor.enaml

Screenshot

[image: ../_images/ex_live_editor.png]

Example Enaml Code

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" An example of using the live editor applib components.

This examples shows how the various applib live editor components can be
stitched together to form a live Enaml code editor application.

<< autodoc-me >>
"""
import sys
import traceback

from enaml.applib.live_editor_model import LiveEditorModel
from enaml.applib.live_editor_view import (
 ModelEditorPanel, ViewEditorPanel, TracebackPanel, ViewPanel
)
from enaml.layout.api import HSplitLayout, AreaLayout, DockBarLayout
from enaml.widgets.api import Window, Container, DockArea, DockItem

MODEL_TEXT = """
from atom.api import *

class DemoModel(Atom):
 pass

"""

VIEW_TEXT = """
from enaml.widgets.api import *
from enaml.layout.api import *

enamldef DemoContainer(Container):
 pass

"""

enamldef Main(Window):
 title = 'Live Editor Demo'
 initial_size = (1024, 768)
 attr editor_model = LiveEditorModel(
 model_text=MODEL_TEXT,
 model_item='DemoModel',
 model_filename='demo.py',
 view_text=VIEW_TEXT,
 view_item='DemoContainer',
 view_filename='demo.enaml',
)

 func handle_uncaught_exception(exc, value, tb):
 """Send uncaught exception to the model to avoid crashing the editor."""
 msg = "".join(traceback.format_exception(exc, value, tb))
 print(msg) # Print to console in case there was a startup error
 editor_model.traceback = msg

 initialized::
 sys.excepthook = handle_uncaught_exception

 Container:
 padding = 0
 DockArea:
 layout = AreaLayout(
 HSplitLayout(
 'view-editor-item',
 'view-item',
 sizes=[1, 3],
),
 dock_bars=[
 DockBarLayout(
 'model-editor-item',
 'traceback-item',
 position='left',
),
],
)
 DockItem:
 name = 'model-editor-item'
 title = 'Model Editor'
 stretch = 1
 ModelEditorPanel:
 model = editor_model
 DockItem:
 name = 'view-editor-item'
 title = 'View Editor'
 stretch = 1
 ViewEditorPanel:
 model = editor_model
 DockItem:
 name = 'traceback-item'
 title = 'Errors'
 stretch = 1
 TracebackPanel:
 model = editor_model
 DockItem:
 name = 'view-item'
 title = 'Live View'
 stretch = 4
 ViewPanel:
 model = editor_model

 Sample Workbench Example

Sample Workbench Example

Here is the Python entry point for the example (download here):

#--
Copyright (c) 2013, Nucleic Development Team.
#
Distributed under the terms of the Modified BSD License.
#
The full license is in the file LICENSE, distributed with this software.
#--
""" A simple example plugin application.

This example serves to demonstrate the concepts described the accompanying
developer crash source document.

"""
import enaml
from enaml.workbench.ui.api import UIWorkbench

import sys, os
sys.path.append(os.path.dirname(os.path.abspath(__file__)))

def main():
 with enaml.imports():
 from sample_plugin import SampleManifest

 workbench = UIWorkbench()
 workbench.register(SampleManifest())
 workbench.run()

if __name__ == '__main__':
 main()

The resulting GUI looks like this (on Ubuntu):

[image: ../_images/wb_main.png]
There are three workspaces available in the dropdown menu, which are loaded
just prior to display.

[image: ../_images/wb_first.png]
[image: ../_images/wb_second.png]
[image: ../_images/wb_third.png]

 API Reference

API Reference

Modules

	application

	

	colors

	A utility module for dealing with CSS3 color strings.

	fonts

	A utility module for dealing with CSS3 font strings.

	icon

	

	image

	

	nodevisitor

	

	styling

	Declarative classes which implement style sheet styling.

	validator

	

	version

	

Packages

	applib

	

	core

	

	layout

	

	scintilla

	

	stdlib

	

	widgets

	

 enaml.applib

enaml.applib

Modules

	live_editor_model

	

	live_editor_view

	

 enaml.applib.live_editor_model

enaml.applib.live_editor_model

Classes

	LiveEditorModel

	A model which works in concert with the live editor panels.

	
class enaml.applib.live_editor_model.LiveEditorModel

	Bases: Atom

A model which works in concert with the live editor panels.

This model manages the compiling and instantiation of the model
and view objects defined by the user.

The model has six inputs:

	‘model_text’
	The full text of the Python module which defines the model.

	‘view_text’
	The full text of the Enaml module which defines the view.

	‘model_item’
	The name of the target model class in the model module.

	‘view_item’
	The name of the target enamldef in the view module.

	‘model_filename’
	An optional filename to associate with the model module.

	‘view_filename’
	An optional filename to associate with the view module.

The model has three outputs:

	‘compiled_model’
	The instance of the user defined model, or None if no model
could be created.

	‘compiled_view’
	The instance of the user defined view, or None if no view
could be created.

	‘traceback’
	A string holding the traceback for any compilation and
instantiation errors.

If the ‘compiled_view’ object has a ‘model’ attribute, then the
‘compiled_model’ object will be assigned to that attribute.

	
compiled_model

	The current live model object bound to the main view.

	
compiled_view

	The current live view object to include in the main view.

	
model_text

	The Python module input text for the model module.

	
view_text

	The Enaml module input text for the view module.

	
model_item

	The string name of the Atom class to use as the model.

	
view_item

	The string name of the enamldef to use as the view.

	
model_filename

	An optional filename to use when compiling the python code.

	
view_filename

	An optional filename to use when compiling the enaml code.

	
traceback

	A string which holds the most recent traceback.

	
refresh_model()

	Refresh the compiled model object.

This method will (re)compile the model for the given model text
and update the ‘compiled_model’ attribute. If a compiled view is
available and has a member named ‘model’, the model will be
applied to the view.

	
refresh_view()

	Refresh the compiled view object.

This method will (re)compile the view for the given view text
and update the ‘compiled_view’ attribute. If a compiled model
is available and the view has a member named ‘model’, the model
will be applied to the view.

	
autocomplete(source, position)

	Obtain autocompletion suggestions for the source text using jedi .
if available.

	
relink_view()

	Relink the compiled view with the compiled model.

 enaml.applib.live_editor_view

enaml.applib.live_editor_view

Classes

	EditorPanel

	""" A base enamldef for creating live editor panels.

	ModelEditorPanel

	""" An editor panel which is setup for editing a live model.

	TracebackPanel

	""" A panel for viewing the traceback of a 'LiveEditorModel'.

	ViewEditorPanel

	""" An editor panel which is setup for editing a live view.

	ViewPanel

	""" A panel for viewing the compiled view of a 'LiveEditorModel'.

	
class enaml.applib.live_editor_view.EditorPanel(parent=None, **kwargs)

	Bases: Container

“”” A base enamldef for creating live editor panels.

Users will typically use one the derived classes ‘ModelEditorPanel’
or ‘ViewEditorPanel’.

“””

	
__reduce_ex__(proto)

	An implementation of the reduce protocol.

This method creates a reduction tuple for enamldef instances. It
is not part of the public Enaml api.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
features

	Set the extra features to enable for this widget. This value must
be provided when the widget is instantiated. Runtime changes to
this value are ignored.

	
font

	The font used for the widget.

	
foreground

	The foreground color of the widget.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
maximum_size

	The maximum size for the widget. The default means that the
client should determine an intelligent maximum size.

	
minimum_size

	The minimum size for the widget. The default means that the
client should determine an intelligent minimum size.

	
name

	Export the ‘name’ attribute as a declarative member.

	
status_tip

	The status tip to show when the user hovers over the widget.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

	
tool_tip

	The tool tip to show when the user hovers over the widget.

	
class enaml.applib.live_editor_view.ModelEditorPanel(parent=None, **kwargs)

	Bases: EditorPanel

“”” An editor panel which is setup for editing a live model.

The user must assign a ‘LiveEditorModel’ instance to the ‘model’
attribute.

“””

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
features

	Set the extra features to enable for this widget. This value must
be provided when the widget is instantiated. Runtime changes to
this value are ignored.

	
font

	The font used for the widget.

	
foreground

	The foreground color of the widget.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
maximum_size

	The maximum size for the widget. The default means that the
client should determine an intelligent maximum size.

	
minimum_size

	The minimum size for the widget. The default means that the
client should determine an intelligent minimum size.

	
name

	Export the ‘name’ attribute as a declarative member.

	
status_tip

	The status tip to show when the user hovers over the widget.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

	
tool_tip

	The tool tip to show when the user hovers over the widget.

	
class enaml.applib.live_editor_view.TracebackPanel(parent=None, **kwargs)

	Bases: Container

“”” A panel for viewing the traceback of a ‘LiveEditorModel’.

“””

	
__reduce_ex__(proto)

	An implementation of the reduce protocol.

This method creates a reduction tuple for enamldef instances. It
is not part of the public Enaml api.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
features

	Set the extra features to enable for this widget. This value must
be provided when the widget is instantiated. Runtime changes to
this value are ignored.

	
font

	The font used for the widget.

	
foreground

	The foreground color of the widget.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
maximum_size

	The maximum size for the widget. The default means that the
client should determine an intelligent maximum size.

	
minimum_size

	The minimum size for the widget. The default means that the
client should determine an intelligent minimum size.

	
name

	Export the ‘name’ attribute as a declarative member.

	
status_tip

	The status tip to show when the user hovers over the widget.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

	
tool_tip

	The tool tip to show when the user hovers over the widget.

	
class enaml.applib.live_editor_view.ViewEditorPanel(parent=None, **kwargs)

	Bases: EditorPanel

“”” An editor panel which is setup for editing a live view.

The user must assign a ‘LiveEditorModel’ instance to the ‘model’
attribute.

“””

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
features

	Set the extra features to enable for this widget. This value must
be provided when the widget is instantiated. Runtime changes to
this value are ignored.

	
font

	The font used for the widget.

	
foreground

	The foreground color of the widget.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
maximum_size

	The maximum size for the widget. The default means that the
client should determine an intelligent maximum size.

	
minimum_size

	The minimum size for the widget. The default means that the
client should determine an intelligent minimum size.

	
name

	Export the ‘name’ attribute as a declarative member.

	
status_tip

	The status tip to show when the user hovers over the widget.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

	
tool_tip

	The tool tip to show when the user hovers over the widget.

	
class enaml.applib.live_editor_view.ViewPanel(parent=None, **kwargs)

	Bases: Container

“”” A panel for viewing the compiled view of a ‘LiveEditorModel’.

“””

	
__reduce_ex__(proto)

	An implementation of the reduce protocol.

This method creates a reduction tuple for enamldef instances. It
is not part of the public Enaml api.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
features

	Set the extra features to enable for this widget. This value must
be provided when the widget is instantiated. Runtime changes to
this value are ignored.

	
font

	The font used for the widget.

	
foreground

	The foreground color of the widget.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
maximum_size

	The maximum size for the widget. The default means that the
client should determine an intelligent maximum size.

	
minimum_size

	The minimum size for the widget. The default means that the
client should determine an intelligent minimum size.

	
name

	Export the ‘name’ attribute as a declarative member.

	
status_tip

	The status tip to show when the user hovers over the widget.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

	
tool_tip

	The tool tip to show when the user hovers over the widget.

 enaml.application

enaml.application

Functions

	deferred_call

	Invoke a callable on the next cycle of the main event loop thread.

	is_main_thread

	Indicates whether the caller is on the main gui thread.

	schedule

	Schedule a callable to be executed on the event loop thread.

	timed_call

	Invoke a callable on the main event loop thread at a specified time in the future.

Classes

	Application

	The application object which manages the top-level communication protocol for serving Enaml views.

	ProxyResolver

	An object which resolves requests for proxy objects.

	ScheduledTask

	An object representing a task in the scheduler.

	
enaml.application.deferred_call(callback, *args, **kwargs)

	Invoke a callable on the next cycle of the main event loop
thread.

This is a convenience function for invoking the same method on the
current application instance. If an application instance does not
exist, a RuntimeError will be raised.

	Parameters:

	
	callback (callable) – The callable object to execute at some point in the future.

	args – Any additional positional and keyword arguments to pass to
the callback.

	kwargs – Any additional positional and keyword arguments to pass to
the callback.

	
enaml.application.is_main_thread()

	Indicates whether the caller is on the main gui thread.

This is a convenience function for invoking the same method on the
current application instance. If an application instance does not
exist, a RuntimeError will be raised.

	Returns:

	result – True if called from the main gui thread. False otherwise.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
enaml.application.schedule(callback, args=None, kwargs=None, priority=0)

	Schedule a callable to be executed on the event loop thread.

This call is thread-safe.

This is a convenience function for invoking the same method on the
current application instance. If an application instance does not
exist, a RuntimeError will be raised.

	Parameters:

	
	callback (callable) – The callable object to be executed.

	args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – The positional arguments to pass to the callable.

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The keyword arguments to pass to the callable.

	priority (int [https://docs.python.org/3/library/functions.html#int], optional) – The queue priority for the callable. Smaller values indicate
lower priority, larger values indicate higher priority. The
default priority is zero.

	Returns:

	result – A task object which can be used to unschedule the task or
retrieve the results of the callback after the task has
been executed.

	Return type:

	ScheduledTask

	
enaml.application.timed_call(ms, callback, *args, **kwargs)

	Invoke a callable on the main event loop thread at a specified
time in the future.

This is a convenience function for invoking the same method on the
current application instance. If an application instance does not
exist, a RuntimeError will be raised.

	Parameters:

	
	ms (int [https://docs.python.org/3/library/functions.html#int]) – The time to delay, in milliseconds, before executing the
callable.

	callback (callable) – The callable object to execute at some point in the future.

	args – Any additional positional and keyword arguments to pass to
the callback.

	kwargs – Any additional positional and keyword arguments to pass to
the callback.

	
class enaml.application.Application(*args, **kwargs)

	Bases: Atom

The application object which manages the top-level communication
protocol for serving Enaml views.

	
resolver

	The proxy resolver to use for the application. This will normally
be supplied by application subclasses, but can also be supplied
by the developer to supply custom proxy resolution behavior.

	
style_sheet

	The style sheet to apply to the entire application.

	
static instance()

	Get the global Application instance.

	Returns:

	result – The global application instance, or None if one has not yet
been created.

	Return type:

	Application or None

	
static __new__(cls, *args, **kwargs)

	Create a new Enaml Application.

There may be only one application instance in existence at any
point in time. Attempting to create a new Application when one
exists will raise an exception.

	
start()

	Start the application’s main event loop.

	
stop()

	Stop the application’s main event loop.

	
deferred_call(callback, *args, **kwargs)

	Invoke a callable on the next cycle of the main event loop
thread.

	Parameters:

	
	callback (callable) – The callable object to execute at some point in the future.

	args – Any additional positional and keyword arguments to pass to
the callback.

	kwargs – Any additional positional and keyword arguments to pass to
the callback.

	
timed_call(ms, callback, *args, **kwargs)

	Invoke a callable on the main event loop thread at a
specified time in the future.

	Parameters:

	
	ms (int [https://docs.python.org/3/library/functions.html#int]) – The time to delay, in milliseconds, before executing the
callable.

	callback (callable) – The callable object to execute at some point in the future.

	args – Any additional positional and keyword arguments to pass to
the callback.

	kwargs – Any additional positional and keyword arguments to pass to
the callback.

	
is_main_thread()

	Indicates whether the caller is on the main gui thread.

	Returns:

	result – True if called from the main gui thread. False otherwise.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
create_mime_data()

	Create a new mime data object to be filled by the user.

	Returns:

	result – A concrete implementation of the MimeData class.

	Return type:

	MimeData

	
resolve_proxy_class(declaration_class)

	Resolve the proxy implementation class for a declaration.

This can be reimplemented by Application subclasses if more
control is needed.

	Parameters:

	declaration_class (type [https://docs.python.org/3/library/functions.html#type]) – A ToolkitObject subclass for which the proxy implementation
class should be resolved.

	Returns:

	result – A ProxyToolkitObject subclass for the given class, or None
if one could not be resolved.

	Return type:

	type [https://docs.python.org/3/library/functions.html#type]

	
create_proxy(declaration)

	Create the proxy object for the given declaration.

This can be reimplemented by Application subclasses if more
control is needed.

	Parameters:

	declaration (ToolkitObject) – The object for which a toolkit proxy should be created.

	Returns:

	result – An appropriate toolkit proxy object, or None if one cannot
be create for the given declaration object.

	Return type:

	ProxyToolkitObject or None

	
schedule(callback, args=None, kwargs=None, priority=0)

	Schedule a callable to be executed on the event loop thread.

This call is thread-safe.

	Parameters:

	
	callback (callable) – The callable object to be executed.

	args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – The positional arguments to pass to the callable.

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The keyword arguments to pass to the callable.

	priority (int [https://docs.python.org/3/library/functions.html#int], optional) – The queue priority for the callable. Smaller values indicate
lower priority, larger values indicate higher priority. The
default priority is zero.

	Returns:

	result – A task object which can be used to unschedule the task or
retrieve the results of the callback after the task has
been executed.

	Return type:

	ScheduledTask

	
has_pending_tasks()

	Get whether or not the application has pending tasks.

	Returns:

	result – True if there are pending tasks. False otherwise.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
destroy()

	Destroy this application instance.

Once an application is created, it must be destroyed before a
new application can be instantiated.

	
class enaml.application.ProxyResolver

	Bases: Atom

An object which resolves requests for proxy objects.

	
factories

	A dictionary of factories functions to use when resolving the
proxy. The function should take no arguments, and return the
proxy class when called.

	
resolve(name)

	Resolve the given name to a proxy calls.

For example, ‘Field’ should resolve to a class which implements
the ProxyField interface.

	Parameters:

	name (string) – The name of the proxy object to resolve.

	Returns:

	result – A class which implements the proxy interface, or None if
no class can be found for the given name.

	Return type:

	type [https://docs.python.org/3/library/functions.html#type] or None

	
class enaml.application.ScheduledTask(callback, args, kwargs)

	Bases: Atom

An object representing a task in the scheduler.

	
__init__(callback, args, kwargs)

	Initialize a ScheduledTask.

	Parameters:

	
	callback (callable) – The callable to run when the task is executed.

	args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The tuple of positional arguments to pass to the callback.

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The dict of keyword arguments to pass to the callback.

	
notify(callback)

	Set a callback to be run when the task is executed.

	Parameters:

	callback (callable) – A callable which accepts a single argument which is the
results of the task. It will be invoked immediate after
the task is executed, on the main event loop thread.

	
pending()

	Returns True if this task is pending execution, False
otherwise.

	
unschedule()

	Unschedule the task so that it will not be executed. If
the task has already been executed, this call has no effect.

	
result()

	Returns the result of the task, or ScheduledTask.undefined
if the task has not yet been executed, was unscheduled before
execution, or raised an exception on execution.

 enaml.colors

enaml.colors

Functions

	parse_color

	Parse a CSS3 color string into a tuple of RGBA values.

Classes

	Color

	

	ColorMember

	An Atom member class which coerces a value to a color.

	
enaml.colors.parse_color(color)

	Parse a CSS3 color string into a tuple of RGBA values.

	Parameters:

	color (string) – A CSS3 string representation of the color.

	Returns:

	result – A color object representing the parsed color. If the string
is invalid, None will be returned.

	Return type:

	Color or None

	
class enaml.colors.Color

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
__new__(**kwargs)

	

	
__reduce__()

	Helper for pickle.

	
__repr__()

	Return repr(self).

	
alpha

	Get the alpha value for the color.

	
argb

	Get the color as an #AARRGGBB unsigned long.

	
blue

	Get the blue value for the color.

	
green

	Get the green value for the color.

	
red

	Get the red value for the color.

 enaml.core

enaml.core

Modules

	conditional

	

	declarative

	

	include

	

	looper

	

	object

	

	pattern

	

 enaml.core.conditional

enaml.core.conditional

Classes

	Conditional

	A pattern object that represents conditional objects.

	
class enaml.core.conditional.Conditional(parent=None, **kwargs)

	Bases: Pattern

A pattern object that represents conditional objects.

When the condition attribute is True, the conditional will create
its child items and insert them into its parent; when False, the old
items will be destroyed.

	
condition

	The condition variable. If this is True, a copy of the children
will be inserted into the parent. Otherwise, the old copies will
be destroyed.

	
items

	The list of items created by the conditional. This list should
not be manipulated directly by user code.

	
destroy()

	A reimplemented destructor.

The conditional will release the owned items on destruction.

	
pattern_items()

	Get a list of items created by the pattern.

	
refresh_items()

	Refresh the items of the pattern.

This method destroys the old items and creates and initializes
the new items.

 enaml.core.declarative

enaml.core.declarative

Functions

	d_

	Mark an Atom member as bindable from Enaml syntax.

Classes

	Declarative

	The most base class of the Enaml declarative objects.

	
enaml.core.declarative.d_(member, readable=True, writable=True, final=True)

	Mark an Atom member as bindable from Enaml syntax.

	Parameters:

	
	member (Member) – The atom member to mark as bindable from Enaml syntax.

	readable (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether the member is readable from Enaml syntax. The member
must be readable to use the ‘>>’, ‘:=’, and ‘::’ operators.
The default is True.

	writable (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether the member is writable from Enaml syntax. The member
must be writable to use the ‘=’, ‘<<’, and ‘:=’ operators.
The default is True.

	final (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether or not the member can be redefined from Enaml syntax
using the ‘attr’ keyword. The default is True and indicates
that the member cannot be overridden.

	
class enaml.core.declarative.Declarative(parent=None, **kwargs)

	Bases: Object

The most base class of the Enaml declarative objects.

This class provides the core functionality required of declarative
Enaml types. It can be used directly in a declarative Enaml object
tree to store and react to state changes. It has no concept of a
visual representation; that functionality is added by subclasses.

	
name

	Export the ‘name’ attribute as a declarative member.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
property is_initialized

	A property which gets and sets the initialized flag. This should
not be manipulated directly by user code.

	
initialize()

	Initialize this object all of its children recursively.

This is called to give the objects in the tree the opportunity
to initialize additional state which depends upon the object
tree being fully built. It is the responsibility of external
code to call this method at the appropriate time. This will
emit the initialized signal after all of the children have
been initialized.

	
destroy()

	An overridden destructor method for declarative cleanup.

	
child_added(child)

	An overridden child added event handler.

This handler will automatically initialize a declarative child
if this object itself has already been initialized.

 enaml.core.include

enaml.core.include

Classes

	Include

	An object which dynamically inserts children into its parent.

	
class enaml.core.include.Include(parent=None, **kwargs)

	Bases: Declarative

An object which dynamically inserts children into its parent.

The ‘Include’ object is used to cleanly and easily insert objects
into the children of its parent. ‘Object’ instances assigned to the
‘objects’ list of the ‘Include’ will be parented with the parent of
the ‘Include’. Creating an ‘Include’ with no parent is a programming
error.

	
objects

	The list of objects belonging to this Include. Objects in this
list will be automatically parented with the Include’s parent.

	
destroy_old

	A boolean flag indicating whether to destroy the old objects that
are removed from the parent. The default is True.

	
initialize()

	A reimplemented initializer.

This method will add the include objects to the parent of the
include and ensure that they are initialized.

	
destroy()

	A reimplemented destructor.

The Include will destroy all of its objects if the ‘destroy_old’
flag is set and the parent is not also being destroyed.

 enaml.core.looper

enaml.core.looper

Classes

	Looper

	A pattern object that repeats its children over an iterable.

	
class enaml.core.looper.Looper(parent=None, **kwargs)

	Bases: Pattern

A pattern object that repeats its children over an iterable.

The children of a Looper are used as a template when creating new
objects for each item in the given iterable. Each iteration of the
loop will be given an independent scope which is the union of the
outer scope and any identifiers created during the iteration. This
scope will also contain a loop variable which has item and index
members to access the index and value of the iterable, respectively.

All items created by the looper will be added as children of the
parent of the Looper. The Looper keeps ownership of all items
it creates. When the iterable for the looper is changed, the looper
will only create and destroy children for the items in the iterable
which have changed. When an item in the iterable is moved the
loop.index will be updated to reflect the new index.

The Looper works under the assumption that the values stored in the
iterable are unique.

The loop_item and loop_index scope variables are depreciated in favor
of loop.item and loop.index respectively. This is because the old
loop_index variable may become invalid when items are moved.

	
iterable

	The iterable to use when creating the items for the looper.
The items in the iterable must be unique. This allows the
Looper to optimize the creation and destruction of widgets.
If the iterable is an Iterator it is first coerced to a tuple.

	
items

	The list of items created by the conditional. Each item in the
list represents one iteration of the loop and is a list of the
items generated during that iteration. This list should not be
manipulated directly by user code.

	
destroy()

	A reimplemented destructor.

The looper will release the owned items on destruction.

	
pattern_items()

	Get a list of items created by the pattern.

	
refresh_items()

	Refresh the items of the pattern.

This method destroys the old items and creates and initializes
the new items.

 enaml.core.object

enaml.core.object

Functions

	flag_property

	A factory function which creates a flag accessor property.

Classes

	Object

	The most base class of the Enaml object hierarchy.

	
enaml.core.object.flag_property(flag)

	A factory function which creates a flag accessor property.

	
class enaml.core.object.Object(parent=None, **kwargs)

	Bases: Atom

The most base class of the Enaml object hierarchy.

An Enaml Object provides supports parent-children relationships and
provides methods for navigating, searching, and destroying the tree.

	
name

	An optional name to give to this object to assist in finding it
in the tree (see . the ‘find’ method). There is no guarantee of
uniqueness for an object name. It is left to the developer to
choose an appropriate name.

	
property parent

	The read-only property which returns the object parent. This will
be an Object or None. Use ‘set_parent()’ or pass the parent to
the constructor to set the parent of an object.

	
property children

	A read-only property which returns the object children. This is
a list of Object instances. User code should not modify the list
directly. Instead, use ‘set_parent()’ or ‘insert_children()’.

	
property is_destroyed

	A property which gets and sets the destroyed flag. This should
not be manipulated directly by user code.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
__init__(parent=None, **kwargs)

	Initialize an Object.

	Parameters:

	
	parent (Object or None, optional) – The Object instance which is the parent of this object, or
None if the object has no parent. Defaults to None.

	**kwargs – Additional keyword arguments to apply as attributes to the
object.

	
destroy()

	Destroy this object and all of its children recursively.

This will emit the destroyed event before any change to the
object tree is made. After this returns, the object should be
considered invalid and should no longer be used.

	
set_parent(parent)

	Set the parent for this object.

If the parent is not None, the child will be appended to the end
of the parent’s children. If the parent is already the parent of
this object, then this method is a no-op. If this object already
has a parent, then it will be properly reparented.

	Parameters:

	parent (Object or None) – The Object instance to use for the parent, or None if this
object should be unparented.

Notes

It is the responsibility of the caller to initialize and activate
the object as needed, if it is reparented dynamically at runtime.

	
insert_children(before, insert)

	Insert children into this object at the given location.

The children will be automatically parented and inserted into
the object’s children. If any children are already children of
this object, then they will be moved appropriately.

	Parameters:

	
	before (Object, int [https://docs.python.org/3/library/functions.html#int] or None) – A child object or int to use as the marker for inserting
the new children. The new children will be inserted before
this marker. If the Object is None or not a child, or if
the int is not a valid index, then the new children will be
added to the end of the children.

	insert (iterable) – An iterable of Object children to insert into this object.

Notes

It is the responsibility of the caller to initialize and activate
the object as needed, if it is reparented dynamically at runtime.

	
parent_changed(old, new)

	A method invoked when the parent of the object changes.

This method is called when the parent on the object has changed,
but before the children of the new parent have been updated.
Sublasses may reimplement this method as required.

	Parameters:

	
	old (Object or None) – The old parent of the object.

	new (Object or None) – the new parent of the object.

	
child_added(child)

	A method invoked when a child is added to the object.

Sublasses may reimplement this method as required.

	Parameters:

	child (Object) – The child added to this object.

	
child_moved(child)

	A method invoked when a child is moved in the object.

Sublasses may reimplement this method as required.

	Parameters:

	child (Object) – The child moved in this object.

	
child_removed(child)

	A method invoked when a child is removed from the object.

Sublasses may reimplement this method as required.

	Parameters:

	child (Object) – The child removed from the object.

	
root_object()

	Get the root object for this hierarchy.

	Returns:

	result – The top-most object in the hierarchy to which this object
belongs.

	Return type:

	Object

	
traverse(depth_first=False)

	Yield all of the objects in the tree, from this object down.

	Parameters:

	depth_first (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, yield the nodes in depth first order. If False,
yield the nodes in breadth first order. Defaults to False.

	
traverse_ancestors(root=None)

	Yield all of the objects in the tree, from this object up.

	Parameters:

	root (Object, optional) – The object at which to stop traversal. Defaults to None.

	
find(name, regex=False)

	Find the first object in the subtree with the given name.

This method will traverse the tree of objects, breadth first,
from this object downward, looking for an object with the given
name. The first object with the given name is returned, or None
if no object is found with the given name.

	Parameters:

	
	name (string) – The name of the object for which to search.

	regex (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether the given name is a regex string which should be
matched against the names of children instead of tested
for equality. Defaults to False.

	Returns:

	result – The first object found with the given name, or None if no
object is found with the given name.

	Return type:

	Object or None

	
find_all(name, regex=False)

	Find all objects in the subtree with the given name.

This method will traverse the tree of objects, breadth first,
from this object downward, looking for a objects with the given
name. All of the objects with the given name are returned as a
list.

	Parameters:

	
	name (string) – The name of the objects for which to search.

	regex (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether the given name is a regex string which should be
matched against the names of objects instead of testing
for equality. Defaults to False.

	Returns:

	result – The list of objects found with the given name, or an empty
list if no objects are found with the given name.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of Object

 enaml.core.pattern

enaml.core.pattern

Classes

	Pattern

	A declarative object that represents a pattern object.

	
class enaml.core.pattern.Pattern(parent=None, **kwargs)

	Bases: Declarative

A declarative object that represents a pattern object.

The Pattern class serves as a base class for other classes such as
Looper and Conditional, where the compiler nodes for the hierarchy
are used to modify the standard behavior of creating children.

Creating a Pattern without a parent is a programming error.

	
__intercepts_child_nodes__ = True

	Single to the compiler that this class handles child creation.

	
pattern_nodes

	Storage for the collected pattern nodes. This is used directly
by subclasses and should not be manipulated by user code.

	
initialize()

	A reimplemented initialization method.

	
destroy()

	A reimplemented destructor.

The pattern will destroy all of the pattern items unless the
parent object is in the process of being destroyed.

	
child_node_intercept(nodes, key, f_locals)

	Add a child subtree to this pattern.

This method changes the default behavior of the runtime. It
stores the child nodes and the locals mapping until the object
is initialized, at which point the nodes will be called to
create the pattern items.

	Parameters:

	
	nodes (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of compiler nodes containing the information required
to instantiate the children.

	key (object [https://docs.python.org/3/library/functions.html#object]) – The scope key for the current local scope.

	f_locals (mapping or None) – A mapping object for the current local scope.

	
pattern_items()

	Get a list of the items created by the pattern.

This method must be implemented by subclasses to return a flat
list of Declarative instances created by the subclass.

	Returns:

	result – A new list of Declarative objects owned by the pattern.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
refresh_items()

	Refresh the items of the pattern.

This method must be implemented by subclasses to refresh the
items of the pattern.

 enaml.fonts

enaml.fonts

Functions

	parse_font

	Parse a CSS3 shorthand font string into an Enaml Font object.

Classes

	Font

	

	FontMember

	An Atom member class which coerces a value to a font.

	
enaml.fonts.parse_font(font)

	Parse a CSS3 shorthand font string into an Enaml Font object.

	Returns:

	result – A font object representing the parsed font. If the string is
invalid, None will be returned.

	Return type:

	Font or None

	
class enaml.fonts.Font

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
__new__(**kwargs)

	

	
__repr__()

	Return repr(self).

	
caps

	Get the caps enum for the font.

	
family

	Get the family name for the font.

	
pointsize

	Get the point size for the font.

	
stretch

	Get the stretch enum for the font.

	
style

	Get the style enum for the font.

	
weight

	Get the weight for the font.

 enaml.icon

enaml.icon

Classes

	Icon

	An object object representing an icon.

	IconImage

	An object representing an image in an icon.

	
class enaml.icon.Icon

	Bases: Atom

An object object representing an icon.

Once an image is created it should be treated as read only. User
code should create a new icon object if the parameters need to
be changed.

	
images

	The list of icon images which compose this icon.

	
class enaml.icon.IconImage

	Bases: Atom

An object representing an image in an icon.

Instances of this class are used to populate the ‘images’ list of
an ‘Icon’ instance. Instances of this class should be treated as
read only once they are created.

	
mode

	The widget mode for which this icon should apply.

	
state

	The widget state for which this icon should apply.

	
image

	The image to use for this icon image.

 enaml.image

enaml.image

Classes

	Image

	An object representing an image.

	
class enaml.image.Image

	Bases: Atom

An object representing an image.

Once an image is created it should be treated as read only. User
code should create a new image object if the parameters need to
be changed.

	
format

	The format of the image. By default, the consumer of the image
will probe the header to automatically infer a type.
Base64 images need to be decoded using the base64.b64decode function
from the standard library.

	
raw_size

	The (width, height) raw size of the image. This must be provided
for images where the size is not encoded in the data stream.

	
size

	The (width, height) size of the image. An invalid size indicates
that the size of the image should be automatically inferred. A
valid size indicates that the toolkit image should be scaled to
the specified size.

	
aspect_ratio_mode

	The aspect ratio mode to use when the toolkit scales the image.

	
transform_mode

	The transform mode to use when the toolkit scales the image.

	
data

	The bytestring holding the data for the image.

 enaml.layout

enaml.layout

Modules

	dock_layout

	

	layout_helpers

	

 enaml.layout.dock_layout

enaml.layout.dock_layout

Classes

	AreaLayout

	A layout object for defining a dock area layout.

	DockBarLayout

	A layout object for defining a dock bar layout.

	DockLayout

	The layout object for defining toplevel dock layouts.

	DockLayoutOp

	A sentinel base class for defining dock layout operations.

	DockLayoutValidator

	A node visitor which validates a layout.

	DockLayoutWarning

	A custom user warning for use with dock layouts.

	ExtendItem

	A layout operation which extends an item in a dock bar.

	FloatArea

	A layout operation which creates a new floating dock area.

	FloatItem

	A layout operation which creates a floating dock item.

	HSplitLayout

	A split layout which defaults to 'horizonal' orientation.

	InsertItem

	A layout operation which inserts an item into a layout.

	InsertBorderItem

	A layout operation which inserts an item into an area border.

	InsertDockBarItem

	A layout operation which inserts an item into a dock bar.

	InsertTab

	A layout operation which inserts a tab into a tab group.

	ItemLayout

	A layout object for defining an item layout.

	LayoutNode

	A base class for defining layout nodes.

	RemoveItem

	A layout operation which will remove an item from the layout.

	RetractItem

	A layout operation which retracts an item into a dock bar.

	SplitLayout

	A layout object for defining split dock layouts.

	TabLayout

	A layout object for defining tabbed dock layouts.

	VSplitLayout

	A split layout which defaults to 'vertical' orientation.

	
class enaml.layout.dock_layout.AreaLayout(item=None, **kwargs)

	Bases: LayoutNode

A layout object for defining a dock area layout.

	
item

	The main layout item to include in the area layout.

	
dock_bars

	The dock bar layouts to include in the area layout.

	
floating

	Whether or not the area is floating. A DockLayout should have
at most one non-floating area layout.

	
geometry

	The geometry to apply to the area. This is expressed in desktop
coordinates and only applies if the area is floating.

	
linked

	Whether or not the area is linked with its floating neighbors.
This only has an effect if the area is a floating.

	
maximized

	Whether or not the area is maximized. This only has an effect if
the area is a floating.

	
__init__(item=None, **kwargs)

	

	
children()

	Get the list of children of the area layout.

	
class enaml.layout.dock_layout.DockBarLayout(*items, **kwargs)

	Bases: LayoutNode

A layout object for defining a dock bar layout.

	
position

	The position of the tool bar in its area. Only one tool bar may
occupy a given position at any one time.

	
items

	The list of item layouts to include in the tab layout.

	
__init__(*items, **kwargs)

	

	
children()

	Get the list of children of the dock bar layout.

	
class enaml.layout.dock_layout.DockLayout(*items, **kwargs)

	Bases: LayoutNode

The layout object for defining toplevel dock layouts.

	
items

	The layout items to include in the dock layout.

	
__init__(*items, **kwargs)

	

	
children()

	Get the list of children of the dock layout.

	
class enaml.layout.dock_layout.DockLayoutOp

	Bases: Atom

A sentinel base class for defining dock layout operations.

	
class enaml.layout.dock_layout.DockLayoutValidator(available)

	Bases: NodeVisitor

A node visitor which validates a layout.

If an irregularity or invalid condition is found in the layout, a
warning is emitted. Such conditions can result in undefined layout
behavior.

	
__init__(available)

	Initialize a DockLayoutValidator.

	Parameters:

	available (iterable) – An iterable of strings which represent the available dock
item names onto which the layout will be applied. These are
used to validate the set of visited ItemLayout instances.

	
warn(message)

	Emit a dock layout warning with the given message.

	
setup(node)

	Setup the dock layout validator.

	
teardown(node)

	Teardown the dock layout validator.

	
visit_ItemLayout(node)

	The visitor method for an ItemLayout node.

	
visit_TabLayout(node)

	The visitor method for a TabLayout node.

	
visit_SplitLayout(node)

	The visitor method for a SplitLayout node.

	
visit_DockBarLayout(node)

	The visitor method for a DockBarLayout node.

	
visit_AreaLayout(node)

	The visitor method for an AreaLayout node.

	
visit_DockLayout(node)

	The visitor method for a DockLayout node.

	
class enaml.layout.dock_layout.DockLayoutWarning

	Bases: UserWarning [https://docs.python.org/3/library/exceptions.html#UserWarning]

A custom user warning for use with dock layouts.

	
__weakref__

	list of weak references to the object (if defined)

	
class enaml.layout.dock_layout.ExtendItem

	Bases: DockLayoutOp

A layout operation which extends an item in a dock bar.

This layout operation will cause the named item to be extended to
from its dock bar. If the item does not exist in a dock bar, this
operation is a no-op.

	
item

	The name of the dock item to extend from its dock bar.

	
class enaml.layout.dock_layout.FloatArea

	Bases: DockLayoutOp

A layout operation which creates a new floating dock area.

This layout operation will create a new floating dock area using
the given area layout specification.

	
area

	The area layout to use when building the new dock area.

	
class enaml.layout.dock_layout.FloatItem

	Bases: DockLayoutOp

A layout operation which creates a floating dock item.

This operation will remove an item from the current layout and
insert convert it into a floating item. If the item does not
exist, the operation is a no-op.

	
item

	The item layout to use when configuring the floating item.

	
class enaml.layout.dock_layout.HSplitLayout(*items, **kwargs)

	Bases: SplitLayout

A split layout which defaults to ‘horizonal’ orientation.

	
__init__(*items, **kwargs)

	

	
class enaml.layout.dock_layout.InsertItem

	Bases: DockLayoutOp

A layout operation which inserts an item into a layout.

This operation will remove an item from the current layout and
insert it next to a target item. If the item does not exist, the
operation is a no-op.

If the target -

	
	is a normally docked item
	The item will be inserted as a new split item.

	
	is docked in a tab group
	The item will be inserted as a neighbor of the tab group.

	
	is docked in a dock bar
	The item will be appended to the dock bar.

	
	is a floating dock item
	A new dock area will be created and the item will be inserted
as a new split item.

	
	does not exist
	The item is inserted into the border of the primary dock area.

	
item

	The name of the dock item to insert into the layout.

	
target

	The name of the dock item to use as the target location.

	
position

	The position relative to the target at which to insert the item.

	
class enaml.layout.dock_layout.InsertBorderItem

	Bases: DockLayoutOp

A layout operation which inserts an item into an area border.

This operation will remove an item from the current layout and
insert it into the border of a dock area. If the item does not
exist, the operation is a no-op.

If the target -

	
	is a normally docked item
	The item is inserted into the border of the dock area containing
the target.

	
	is docked in a tab group
	The item is inserted into the border of the dock area containing
the tab group.

	
	is docked in a dock bar
	The item is inserted into the border of the dock area containing
the dock bar.

	
	is a floating dock item
	A new dock area will be created and the item will be inserted
into the border of the new dock area.

	
	does not exist
	The item is inserted into the border of the primary dock area.

	
item

	The name of the dock item to insert into the layout.

	
target

	The name of the dock item to use as the target location.

	
position

	The border position at which to insert the item.

	
class enaml.layout.dock_layout.InsertDockBarItem

	Bases: DockLayoutOp

A layout operation which inserts an item into a dock bar.

This operation will remove an item from the current layout and
insert it into a dock bar in a dock area. If the item does not
exist, the operation is a no-op.

If the target -

	
	is a normally docked item
	The item is inserted into the dock bar of the dock area
containing the target.

	
	is docked in a tab group
	The item is inserted into the dock bar of the dock area
containing the tab group.

	
	is docked in a dock bar
	The item is inserted into the dock bar of the dock area
containing the dock bar.

	
	is a floating dock item
	A new dock area will be created and the item will be inserted
into the dock bar of the new dock area.

	
	does not exist
	The item is inserted into the dock bar of the primary dock
area.

	
item

	The name of the dock item to insert into the layout.

	
target

	The name of the dock item to use as the target location.

	
position

	The dock bar position at which to insert the item.

	
index

	The index at which to insert the dock bar item.

	
class enaml.layout.dock_layout.InsertTab

	Bases: DockLayoutOp

A layout operation which inserts a tab into a tab group.

This operation will remove an item from the current layout and
insert it into a tab group in a dock area. If the item does not
exist, the operation is a no-op.

If the target -

	
	is a normally docked item
	The target and item will be merged into a new tab group
using the default tab position.

	
	is docked in a tab group
	The item will be inserted into the tab group.

	
	is docked in a dock bar
	The item will be appended to the dock bar.

	
	is a floating dock item
	A new dock area will be created and the target and item will
be merged into a new tab group.

	
	does not exist
	The item is inserted into the left border of the primary dock
area.

	
item

	The name of the dock item to insert into the tab group.

	
target

	The name of an existing dock item in the tab group of interest.

	
index

	The index at which to insert the dock item.

	
tab_position

	The position of the tabs for a newly created tab group.

	
class enaml.layout.dock_layout.ItemLayout(name, **kwargs)

	Bases: LayoutNode

A layout object for defining an item layout.

	
name

	The name of the DockItem to which this layout item applies.

	
floating

	Whether or not the item is floating. An ItemLayout defined as
a toplevel item in a DockLayout should be marked as floating.

	
geometry

	The geometry to apply to the item. This is expressed in desktop
coordinates and only applies if the item is floating.

	
linked

	Whether or not the item is linked with its floating neighbors.
This value will only have an effect if the item is floating.

	
maximized

	Whether or not the item is maximized. This value will only have
effect if the item is floating or docked in a SplitLayout.

	
__init__(name, **kwargs)

	

	
class enaml.layout.dock_layout.LayoutNode

	Bases: Atom

A base class for defining layout nodes.

This class provides basic traversal functionality.

	
children()

	Get the children of the node.

	Returns:

	result – The list of LayoutNode children of the node. The default
implementation returns an empty list.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
traverse(depth_first=False)

	Yield all of the nodes in the layout, from this node down.

	Parameters:

	depth_first (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, yield the nodes in depth first order. If False,
yield the nodes in breadth first order. Defaults to False.

	Returns:

	result – A generator which yields 2-tuples of (parent, node) for all
nodes in the layout.

	Return type:

	generator

	
find(kind)

	Find the first layout node of the given kind.

	Parameters:

	kind (type [https://docs.python.org/3/library/functions.html#type] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of types) – The type of the layout node to find.

	Returns:

	result – The first layout node of the given type in the tree. The
search is performed breadth-first.

	Return type:

	LayoutNode or None

	
find_all(kind)

	Find the layout nodes of the given kind.

	Parameters:

	kind (type [https://docs.python.org/3/library/functions.html#type] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of types) – The type of the layout nodes to find.

	Returns:

	result – The list of the layout nodes in the tree which are of the
request type. They are ordered breadth-first.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
class enaml.layout.dock_layout.RemoveItem

	Bases: DockLayoutOp

A layout operation which will remove an item from the layout.

This layout operation will remove the dock item from the layout
and hide it. It can be added back to layout later with one of the
other layout operations.

	
item

	The name of the dock item to remove from the layout.

	
class enaml.layout.dock_layout.RetractItem

	Bases: DockLayoutOp

A layout operation which retracts an item into a dock bar.

This layout operation will cause the named item to be retracted
into its dock bar. If the item does not exist in a dock bar, this
operation is a no-op.

	
item

	The name of the dock item to retract into its dock bar.

	
class enaml.layout.dock_layout.SplitLayout(*items, **kwargs)

	Bases: LayoutNode

A layout object for defining split dock layouts.

	
orientation

	The orientation of the split layout.

	
sizes

	The default sizes to apply to the items in the splitter. If
provided, the length must be equal to the number of items.

	
items

	This list of split layout items to include in the split layout.

	
__init__(*items, **kwargs)

	

	
children()

	Get the list of children of the split layout.

	
class enaml.layout.dock_layout.TabLayout(*items, **kwargs)

	Bases: LayoutNode

A layout object for defining tabbed dock layouts.

	
tab_position

	The position of the tabs in the tab layout.

	
index

	The index of the currently selected tab.

	
maximized

	Whether or not the tab layout is maximized.

	
items

	The list of item layouts to include in the tab layout.

	
__init__(*items, **kwargs)

	

	
children()

	Get the list of children of the tab layout.

	
class enaml.layout.dock_layout.VSplitLayout(*items, **kwargs)

	Bases: SplitLayout

A split layout which defaults to ‘vertical’ orientation.

	
__init__(*items, **kwargs)

	

 enaml.layout.layout_helpers

enaml.layout.layout_helpers

. rubric:: Functions

	horizontal

	Create a left-to-right SequenceHelper object.

	vertical

	Create a top-to-bottom SequenceHelper object.

	hbox

	Create a horizontal LinearBoxHelper object.

	vbox

	Create a vertical LinearBoxHelper object.

	align

	Create a SequenceHelper with the given anchor object.

	factory

	Create a FactoryHelper with the given factory function.

	grid

	Create a GridHelper object with the given rows.

	expand_constraints

	A function which expands any ConstraintHelper in the list.

	
enaml.layout.layout_helpers.horizontal(*items, **config)

	Create a left-to-right SequenceHelper object.

	Parameters:

	
	items – The constraint items to pass to the helper.

	config – Additional keyword arguments to pass to the helper.

	
enaml.layout.layout_helpers.vertical(*items, **config)

	Create a top-to-bottom SequenceHelper object.

	Parameters:

	
	items – The constraint items to pass to the helper.

	config – Additional keyword arguments to pass to the helper.

	
enaml.layout.layout_helpers.hbox(*items, **config)

	Create a horizontal LinearBoxHelper object.

	Parameters:

	
	items – The constraint items to pass to the helper.

	config – Additional keyword arguments to pass to the helper.

	
enaml.layout.layout_helpers.vbox(*items, **config)

	Create a vertical LinearBoxHelper object.

	Parameters:

	
	items – The constraint items to pass to the helper.

	config – Additional keyword arguments to pass to the helper.

	
enaml.layout.layout_helpers.align(anchor, *items, **config)

	Create a SequenceHelper with the given anchor object.

	Parameters:

	
	anchor (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the target anchor on the constrainable object.

	items – The constraint items to pass to the helper.

	config – Additional keyword arguments to pass to the helper.

	
enaml.layout.layout_helpers.factory(func, *args, **kwargs)

	Create a FactoryHelper with the given factory function.

	Parameters:

	
	func (callable) – The callable which will generate the list of constraints.
The owner widget will be passed as the first argument.

	args – Additional positional arguments to pass to the factory.

	kwargs – Additional keyword arguments to pass to the factory.

	
enaml.layout.layout_helpers.grid(*rows, **config)

	Create a GridHelper object with the given rows.

	Parameters:

	
	rows – Rows of identifier to use to build a grid.

	config – Additional keyword arguments to pass to the helper.

	
enaml.layout.layout_helpers.expand_constraints(component, constraints)

	A function which expands any ConstraintHelper in the list.

	Parameters:

	
	component (Constrainable) – The constrainable component with which the constraints are
associated. This will be passed to the .create_constraints()
method of any ConstraintHelper instance.

	constraints (list [https://docs.python.org/3/library/stdtypes.html#list]) – The list of constraints to expand.

	Returns:

	result – The list of expanded constraints.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

 enaml.nodevisitor

enaml.nodevisitor

Classes

	NodeVisitor

	A base class for implementing node visitors.

	
class enaml.nodevisitor.NodeVisitor

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A base class for implementing node visitors.

Subclasses should implement visitor methods using the naming scheme
‘visit_<name>’ where <name> is the type name of a given node.

	
__call__(node)

	The main entry point of the visitor class.

This method should be called to execute the visitor. It will
call the setup and teardown methods before and after invoking
the visit method on the node.

	Parameters:

	node (object [https://docs.python.org/3/library/functions.html#object]) – The toplevel node of interest.

	Returns:

	result – The return value from the result() method.

	Return type:

	object [https://docs.python.org/3/library/functions.html#object]

	
setup(node)

	Perform any necessary setup before running the visitor.

This method is invoked before the visitor is executed over
a particular node. The default implementation does nothing.

	Parameters:

	node (object [https://docs.python.org/3/library/functions.html#object]) – The node passed to the visitor.

	
result(node)

	Get the results for the visitor.

This method is invoked after the visitor is executed over a
particular node and the result() method has been called. The
default implementation returns None.

	Parameters:

	node (object [https://docs.python.org/3/library/functions.html#object]) – The node passed to the visitor.

	Returns:

	result – The results of the visitor.

	Return type:

	object [https://docs.python.org/3/library/functions.html#object]

	
teardown(node)

	Perform any necessary cleanup when the visitor is finished.

This method is invoked after the visitor is executed over a
particular node and the result() method has been called. The
default implementation does nothing.

	Parameters:

	node (object [https://docs.python.org/3/library/functions.html#object]) – The node passed to visitor.

	
visit(node)

	The main visitor dispatch method.

	Parameters:

	node (object [https://docs.python.org/3/library/functions.html#object]) – A node from the tree.

	
default_visit(node)

	The default node visitor method.

This method is invoked when no named visitor method is found
for a given node. This default behavior raises an exception for
the missing handler. Subclasses may reimplement this method for
custom default behavior.

	
__weakref__

	list of weak references to the object (if defined)

 enaml.scintilla

enaml.scintilla

Modules

	scintilla

	

 enaml.scintilla.scintilla

enaml.scintilla.scintilla

Classes

	Scintilla

	A Scintilla text editing control.

	ScintillaDocument

	An opaque class which represents a Scintilla text document.

	
class enaml.scintilla.scintilla.Scintilla(parent=None, **kwargs)

	Bases: Control

A Scintilla text editing control.

Notes

The ‘background’, ‘foreground’, and ‘font’ attributes have no effect
on this widget. All styling is supplied via the ‘theme’ attribute.

	
autocomplete

	Enable autocompletion

	
autocompletions

	Autocompletion values and call signatures.
Images can be used by appending “?<image_no>” to the completion value.
The images are defined by passing a list of image paths as the
“autocompletion_images” settings key.

	
cursor_position

	Position of the cursor within the editor in the format (line, column)
This is needed for autocompletion engines to determine the current text

	
document

	The scintilla document buffer to use in the editor. A default
document will be created automatically for each editor. This
value only needs to be supplied when swapping buffers or when
using a single buffer in multiple editors.

	
syntax

	The language syntax to apply to the document.

	
theme

	The theme to apply to the widget. See the ‘./THEMES’ document
for how to create a theme dict for the widget.

	
settings

	The settings to apply to the widget. See the ‘./SETTINGS’
document for how to create a settings dict for the widget.

	
zoom

	The zoom factor for the editor. The value is internally clamped
to the range -10 to 20, inclusive.

	
text_changed

	An event emitted when the text is changed.

	
hug_width

	Text Editors expand freely in width by default.

	
hug_height

	Text Editors expand freely in height by default.

	
markers

	Markers to display.

	
indicators

	Indicators to display.

	
proxy

	A reference to the ProxyScintilla object.

	
get_text()

	Get the text in the current document.

	Returns:

	result – The text in the current document.

	Return type:

	unicode

	
set_text(text)

	Set the text in the current document.

	Parameters:

	text (unicode) – The text to apply to the current document.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

	
class enaml.scintilla.scintilla.ScintillaDocument

	Bases: Atom

An opaque class which represents a Scintilla text document.

An instance of this class can be shared with multiple Scintilla
widgets to enable multiple editor views on the same buffer, or
to use multiple buffers with the same view.

	
uuid

	A uuid which can be used as a handle by the toolkit backend.

 enaml.stdlib

enaml.stdlib

Modules

	dialog_buttons

	

	dock_area_styles

	A collection of standard style templates for the DockArea widget.

	fields

	Enaml Standard Library - Fields

	mapped_view

	

	message_box

	

	slider_transform

	Enaml Standard Library - Slider Transforms

	task_dialog

	

 enaml.stdlib.dialog_buttons

enaml.stdlib.dialog_buttons

Classes

	DialogButton

	A class for specifying a button in a button box.

	DialogButtonBox

	""" A component for defining a button box for a dialog.

	
class enaml.stdlib.dialog_buttons.DialogButton(text, action, **kwargs)

	Bases: Atom

A class for specifying a button in a button box.

Instances of this class are created by users to specify the buttons
which will be shown in a DialogButtonBox.

	
__init__(text, action, **kwargs)

	Initialize a DialogButton.

	Parameters:

	
	text (unicode) – The unicode label for the button.

	action ('accept' or 'reject') – The dialog action to perform when the button is clicked.

	**kwargs – Additional optional state to apply to the button.

	
class enaml.stdlib.dialog_buttons.DialogButtonBox(parent=None, **kwargs)

	Bases: Container

“”” A component for defining a button box for a dialog.

The dialog button box must be used as a decendant of a Dialog, and
relies on dynamic scoping to invoke the dialog action when a button
is clicked. The button widgets created by the dialog can be styled
using the style class ‘dialog-box-button’.

	
buttons

	A list of DialogButton objects which represent the buttons to
create for the dialog box. This value should be set before the
widget is shown. Dynamic changes will not update the UI.

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
Events

clicked

	This event will be emitted when a button is clicked, but before
the dialog action is taken. The payload will be the DialogButton
instance for the button which was clicked.

	
"""

	

	
__reduce_ex__(proto)

	An implementation of the reduce protocol.

This method creates a reduction tuple for enamldef instances. It
is not part of the public Enaml api.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
features

	Set the extra features to enable for this widget. This value must
be provided when the widget is instantiated. Runtime changes to
this value are ignored.

	
font

	The font used for the widget.

	
foreground

	The foreground color of the widget.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
maximum_size

	The maximum size for the widget. The default means that the
client should determine an intelligent maximum size.

	
minimum_size

	The minimum size for the widget. The default means that the
client should determine an intelligent minimum size.

	
name

	Export the ‘name’ attribute as a declarative member.

	
status_tip

	The status tip to show when the user hovers over the widget.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

	
tool_tip

	The tool tip to show when the user hovers over the widget.

 enaml.stdlib.dock_area_styles

enaml.stdlib.dock_area_styles

Functions

	available_styles

	Get the list of names of registered styles.

	register_styles

	Register dock area styles with the given name.

	get_registered_styles

	Get the styles registered for the given name.

Classes

	BasicStyle

	

	AreaStyle

	

	RubberBandStyle

	

	WindowStyle

	

	WindowButtonStyle

	

	ContainerStyle

	

	TabBarTabStyle

	

	TabBarCloseButtonStyle

	

	DockBarButtonStyle

	

	ItemStyle

	

	TitleBarStyle

	

	TitleBarLabelStyle

	

	TitleBarButtonStyle

	

	
enaml.stdlib.dock_area_styles.available_styles()

	Get the list of names of registered styles.

	Returns:

	result – The list of names of registered style templates.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
enaml.stdlib.dock_area_styles.register_styles(name, styles)

	Register dock area styles with the given name.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name to associate with the styles.

	styles (template) – An Enaml template which will generate the dock area styles
when invoked.

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – This will be raised the name is already registered.

	
enaml.stdlib.dock_area_styles.get_registered_styles(name)

	Get the styles registered for the given name.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the registered styles.

	Returns:

	result – An Enaml template which will generated the dock area styles
when instantiated. It should be invoked with no arguments in
the body of a StyleSheet.

	Return type:

	template or None

	
class enaml.stdlib.dock_area_styles.BasicStyle(parent=None, **kwargs)

	Bases: Style

	
__reduce_ex__(proto)

	An implementation of the reduce protocol.

This method creates a reduction tuple for enamldef instances. It
is not part of the public Enaml api.

	
class enaml.stdlib.dock_area_styles.AreaStyle(parent=None, **kwargs)

	Bases: BasicStyle

	
class enaml.stdlib.dock_area_styles.RubberBandStyle(parent=None, **kwargs)

	Bases: BasicStyle

	
class enaml.stdlib.dock_area_styles.WindowStyle(parent=None, **kwargs)

	Bases: BasicStyle

	
class enaml.stdlib.dock_area_styles.WindowButtonStyle(parent=None, **kwargs)

	Bases: BasicStyle

	
class enaml.stdlib.dock_area_styles.ContainerStyle(parent=None, **kwargs)

	Bases: BasicStyle

	
class enaml.stdlib.dock_area_styles.TabBarTabStyle(parent=None, **kwargs)

	Bases: BasicStyle

	
class enaml.stdlib.dock_area_styles.TabBarCloseButtonStyle(parent=None, **kwargs)

	Bases: BasicStyle

	
class enaml.stdlib.dock_area_styles.DockBarButtonStyle(parent=None, **kwargs)

	Bases: BasicStyle

	
class enaml.stdlib.dock_area_styles.ItemStyle(parent=None, **kwargs)

	Bases: BasicStyle

	
class enaml.stdlib.dock_area_styles.TitleBarStyle(parent=None, **kwargs)

	Bases: BasicStyle

	
class enaml.stdlib.dock_area_styles.TitleBarLabelStyle(parent=None, **kwargs)

	Bases: BasicStyle

	
class enaml.stdlib.dock_area_styles.TitleBarButtonStyle(parent=None, **kwargs)

	Bases: BasicStyle

 enaml.stdlib.fields

enaml.stdlib.fields

Classes

	FloatField

	""" A Field that only accept floating point values.

	IntField

	""" A field that only accept integer inputs.

	RegexField

	""" A Field that accepts text validated by a regular expression.

	
class enaml.stdlib.fields.FloatField(parent=None, **kwargs)

	Bases: Field

“”” A Field that only accept floating point values.

“””

	
__reduce_ex__(proto)

	An implementation of the reduce protocol.

This method creates a reduction tuple for enamldef instances. It
is not part of the public Enaml api.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

	
class enaml.stdlib.fields.IntField(parent=None, **kwargs)

	Bases: Field

“”” A field that only accept integer inputs.

“””

	
__reduce_ex__(proto)

	An implementation of the reduce protocol.

This method creates a reduction tuple for enamldef instances. It
is not part of the public Enaml api.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

	
class enaml.stdlib.fields.RegexField(parent=None, **kwargs)

	Bases: Field

“”” A Field that accepts text validated by a regular expression.

“””

	
__reduce_ex__(proto)

	An implementation of the reduce protocol.

This method creates a reduction tuple for enamldef instances. It
is not part of the public Enaml api.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

 enaml.stdlib.mapped_view

enaml.stdlib.mapped_view

Classes

	MappedView

	""" A custom Include subtype which will automatically create a view based on the type of a given model object.

	
class enaml.stdlib.mapped_view.MappedView(parent=None, **kwargs)

	Bases: Include

“”” A custom Include subtype which will automatically create a
view based on the type of a given model object.

	Parameters:

	
	model (object [https://docs.python.org/3/library/functions.html#object]) – The object acting as the model for this view. The mro of the
type of this object is traversed to find a match in the given
type map. If a match exists, the corresponding view is created.

	typemap (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary which maps object type to a callable which returns
a view or iterable of views when invoked.

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Additional keyword arguments to pass to the matching callable.
The default is an empty dictionary.

	modelkey (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – If non-empty, this key will be added to the dict of keyword
arguments passed to a matching callable in the typemap. The
value of the key will be the model instance associated with
this AutoView. The default is ‘model’.

	""" –

	
__reduce_ex__(proto)

	An implementation of the reduce protocol.

This method creates a reduction tuple for enamldef instances. It
is not part of the public Enaml api.

 enaml.stdlib.message_box

enaml.stdlib.message_box

Functions

	about

	Display a simple about box with title and text.

	critical

	Display an critical message box with title and text.

	information

	Display an information message box with title and text.

	question

	Display a question message box with title and text.

	warning

	Display a warning message box with title and text.

Classes

	MessageBox

	""" A dialog which provides the functionality of a message box.

	
enaml.stdlib.message_box.about(parent, title, text)

	Display a simple about box with title and text.

	Parameters:

	
	parent (Widget or None) – The Enaml widget which should be the parent of the dialog.

	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – The text for the window title bar.

	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – The main text to display in the dialog.

	
enaml.stdlib.message_box.critical(parent, title, text, buttons=None)

	Display an critical message box with title and text.

On Windows, the dialog will display the stock critical icon.

	Parameters:

	
	parent (Widget or None) – The Enaml widget which should be the parent of the dialog.

	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – The text for the window title bar.

	buttons (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – The list of DialogButton instances to display in the dialog.
If this is not provided, an ‘OK’ button will be created.

	Returns:

	result – The dialog button object which was clicked, or None if the
dialog was closed without clicking a dialog button.

	Return type:

	DialogButton or None

	
enaml.stdlib.message_box.information(parent, title, text, buttons=None)

	Display an information message box with title and text.

On Windows, the dialog will display the stock information icon.

	Parameters:

	
	parent (Widget or None) – The Enaml widget which should be the parent of the dialog.

	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – The text for the window title bar.

	buttons (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – The list of DialogButton instances to display in the dialog.
If this is not provided, an ‘OK’ button will be created.

	Returns:

	result – The dialog button object which was clicked, or None if the
dialog was closed without clicking a dialog button.

	Return type:

	DialogButton or None

	
enaml.stdlib.message_box.question(parent, title, text, buttons=None)

	Display a question message box with title and text.

On Windows, the dialog will display the stock question icon.

	Parameters:

	
	parent (Widget or None) – The Enaml widget which should be the parent of the dialog.

	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – The text for the window title bar.

	buttons (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – The list of DialogButton instances to display in the dialog.
If this is not provided, ‘Yes’|’No’ buttons will be created.

	Returns:

	result – The dialog button object which was clicked, or None if the
dialog was closed without clicking a dialog button.

	Return type:

	DialogButton or None

	
enaml.stdlib.message_box.warning(parent, title, text, buttons=None)

	Display a warning message box with title and text.

On Windows, the dialog will display the stock warning icon.

	Parameters:

	
	parent (Widget or None) – The Enaml widget which should be the parent of the dialog.

	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – The text for the window title bar.

	buttons (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – The list of DialogButton instances to display in the dialog.
If this is not provided, an ‘OK’ button will be created.

	Returns:

	result – The dialog button object which was clicked, or None if the
dialog was closed without clicking a dialog button.

	Return type:

	DialogButton or None

	
class enaml.stdlib.message_box.MessageBox(parent=None, **kwargs)

	Bases: Dialog

“”” A dialog which provides the functionality of a message box.

This element uses the task dialog components to assemble a dialog
based on the provided attribute values.

Simple versions of this dialog can be launched with the functions
‘about’, ‘critical’, ‘information’, ‘question’, and ‘warning’
defined in this module. These functions are intended to be simple
and do not provide all options available on this element. If full
control over the message box is needed, use this element directly.

	
image

	The image to use for the icon in the dialog body icon area. If
this is not provided, no icon area will be generated.

	Type:

	Image, optional

	
text

	The text to display in the instruction area of the dialog. This
should always be provided.

	Type:

	basetring

	
content

	The secondary text to place in the content area of the dialog.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str], optional

	
details

	Extra information to show in the details area. This string will
be provided to an Html area, and can therefore contain html
markup. If this is provided, the details area will be togglable
via a check box placed in the dialog command area.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str], optional

	
buttons

	The list of DialogButton objects which define the buttons to
display in a DialogButtonBox which is placed in the dialog
command area. This should always be provided.

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
"""

	

	
__reduce_ex__(proto)

	An implementation of the reduce protocol.

This method creates a reduction tuple for enamldef instances. It
is not part of the public Enaml api.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

 enaml.stdlib.slider_transform

enaml.stdlib.slider_transform

Classes

	SliderTransform

	A base class for creating declarative slider transforms.

	FloatTransform

	A concreted SliderTransform for floating point values.

	
class enaml.stdlib.slider_transform.SliderTransform(parent=None, **kwargs)

	Bases: Declarative

A base class for creating declarative slider transforms.

A SliderTransform must be subclassed to be useful. The abstract api
defined below must be implemented by the subclass.

When using a transform with a slider, the transform takes complete
ownership of the slider range. No effort is made to observe outside
changes to the slider range, so all changes should be made on the
transform.

	
minimum

	The data-space minimum for the transform. This may be redefined
by a subclass to enforce stronger typing.

	
maximum

	The data-space maximum for the transform. This may be redefined
by a subclass to enforce stronger typing.

	
value

	The data-space value for the transform. This may be redefined
by a subclass to enforce stronger typing.

	
initialize()

	A reimplemented initialization handler.

The parent slider values are initialized during the transform
initialization pass.

	
parent_changed(old, new)

	Handle the parent changed event for the transform.

	
get_minimum()

	Get the minimum value of the transform as an int.

	Returns:

	result – The minimum value of the transform converted to an int.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
get_maximum()

	Get the maximum value of the transform as an int.

	Returns:

	result – The maximum value of the transform converted to an int.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
get_value()

	Get the value of the transform as an int.

	Returns:

	result – The value of the transform converted to an int.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
set_value(value)

	Set the value of the transform from an int.

	Parameters:

	value (int [https://docs.python.org/3/library/functions.html#int]) – The integer value of the slider.

	
class enaml.stdlib.slider_transform.FloatTransform(parent=None, **kwargs)

	Bases: SliderTransform

A concreted SliderTransform for floating point values.

	
minimum

	A redeclared parent class member which enforces float values.

	
maximum

	A redeclared parent class member which enforces float values.

	
value

	A redeclared parent class member which enforces float values.

	
precision

	The number of stops to use between the minimum and maximum.

	
get_minimum()

	Get the minimum value of the transform as an int.

	Returns:

	result – The minimum value of the transform converted to an int.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
get_maximum()

	Get the maximum value of the transform as an int.

	Returns:

	result – The maximum value of the transform converted to an int.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
get_value()

	Get the value of the transform as an int.

	Returns:

	result – The value of the transform converted to an int.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
set_value(val)

	Set the value of the transform from an int.

	Parameters:

	value (int [https://docs.python.org/3/library/functions.html#int]) – The integer value of the slider.

 enaml.stdlib.slider_transform

enaml.stdlib.slider_transform

Classes

	TaskDialogIconArea

	""" A custom container for use in a task dialog.

	TaskDialogInstructionArea

	""" A custom container for use in a task dialog.

	TaskDialogContentArea

	""" A custom container for use in a task dialog.

	TaskDialogCommandArea

	""" A custom container for use in a task dialog.

	TaskDialogDetailsArea

	""" A custom container for use in a task dialog.

	TaskDialogFootnoteArea

	""" A custom container for use in a task dialog.

	TaskDialogBody

	""" A custom container used to create a task dialog body.

	
class enaml.stdlib.task_dialog.TaskDialogIconArea(parent=None, **kwargs)

	Bases: Container

“”” A custom container for use in a task dialog.

User code can declare and instance of this element in the body of a
TaskDialogBody in order to provide icon area content.

“””

	
__reduce_ex__(proto)

	An implementation of the reduce protocol.

This method creates a reduction tuple for enamldef instances. It
is not part of the public Enaml api.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
features

	Set the extra features to enable for this widget. This value must
be provided when the widget is instantiated. Runtime changes to
this value are ignored.

	
font

	The font used for the widget.

	
foreground

	The foreground color of the widget.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
layout_constraints

	

	
maximum_size

	The maximum size for the widget. The default means that the
client should determine an intelligent maximum size.

	
minimum_size

	The minimum size for the widget. The default means that the
client should determine an intelligent minimum size.

	
name

	Export the ‘name’ attribute as a declarative member.

	
status_tip

	The status tip to show when the user hovers over the widget.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

	
tool_tip

	The tool tip to show when the user hovers over the widget.

	
class enaml.stdlib.task_dialog.TaskDialogInstructionArea(parent=None, **kwargs)

	Bases: Container

“”” A custom container for use in a task dialog.

User code can declare and instance of this element in the body of a
TaskDialogBody in order to provide instruction area content.

“””

	
__reduce_ex__(proto)

	An implementation of the reduce protocol.

This method creates a reduction tuple for enamldef instances. It
is not part of the public Enaml api.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
features

	Set the extra features to enable for this widget. This value must
be provided when the widget is instantiated. Runtime changes to
this value are ignored.

	
font

	The font used for the widget.

	
foreground

	The foreground color of the widget.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
maximum_size

	The maximum size for the widget. The default means that the
client should determine an intelligent maximum size.

	
minimum_size

	The minimum size for the widget. The default means that the
client should determine an intelligent minimum size.

	
name

	Export the ‘name’ attribute as a declarative member.

	
status_tip

	The status tip to show when the user hovers over the widget.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

	
tool_tip

	The tool tip to show when the user hovers over the widget.

	
class enaml.stdlib.task_dialog.TaskDialogContentArea(parent=None, **kwargs)

	Bases: Container

“”” A custom container for use in a task dialog.

User code can declare and instance of this element in the body of a
TaskDialogBody in order to provide content area content.

“””

	
__reduce_ex__(proto)

	An implementation of the reduce protocol.

This method creates a reduction tuple for enamldef instances. It
is not part of the public Enaml api.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
features

	Set the extra features to enable for this widget. This value must
be provided when the widget is instantiated. Runtime changes to
this value are ignored.

	
font

	The font used for the widget.

	
foreground

	The foreground color of the widget.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
maximum_size

	The maximum size for the widget. The default means that the
client should determine an intelligent maximum size.

	
minimum_size

	The minimum size for the widget. The default means that the
client should determine an intelligent minimum size.

	
name

	Export the ‘name’ attribute as a declarative member.

	
status_tip

	The status tip to show when the user hovers over the widget.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

	
tool_tip

	The tool tip to show when the user hovers over the widget.

	
class enaml.stdlib.task_dialog.TaskDialogCommandArea(parent=None, **kwargs)

	Bases: Container

“”” A custom container for use in a task dialog.

User code can declare and instance of this element in the body of a
TaskDialogBody in order to provide command area content.

“””

	
__reduce_ex__(proto)

	An implementation of the reduce protocol.

This method creates a reduction tuple for enamldef instances. It
is not part of the public Enaml api.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
features

	Set the extra features to enable for this widget. This value must
be provided when the widget is instantiated. Runtime changes to
this value are ignored.

	
font

	The font used for the widget.

	
foreground

	The foreground color of the widget.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
maximum_size

	The maximum size for the widget. The default means that the
client should determine an intelligent maximum size.

	
minimum_size

	The minimum size for the widget. The default means that the
client should determine an intelligent minimum size.

	
name

	Export the ‘name’ attribute as a declarative member.

	
status_tip

	The status tip to show when the user hovers over the widget.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

	
tool_tip

	The tool tip to show when the user hovers over the widget.

	
class enaml.stdlib.task_dialog.TaskDialogDetailsArea(parent=None, **kwargs)

	Bases: Container

“”” A custom container for use in a task dialog.

User code can declare and instance of this element in the body of a
TaskDialogBody in order to provide details area content.

“””

	
__reduce_ex__(proto)

	An implementation of the reduce protocol.

This method creates a reduction tuple for enamldef instances. It
is not part of the public Enaml api.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
features

	Set the extra features to enable for this widget. This value must
be provided when the widget is instantiated. Runtime changes to
this value are ignored.

	
font

	The font used for the widget.

	
foreground

	The foreground color of the widget.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
maximum_size

	The maximum size for the widget. The default means that the
client should determine an intelligent maximum size.

	
minimum_size

	The minimum size for the widget. The default means that the
client should determine an intelligent minimum size.

	
name

	Export the ‘name’ attribute as a declarative member.

	
status_tip

	The status tip to show when the user hovers over the widget.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

	
tool_tip

	The tool tip to show when the user hovers over the widget.

	
class enaml.stdlib.task_dialog.TaskDialogFootnoteArea(parent=None, **kwargs)

	Bases: Container

“”” A custom container for use in a task dialog.

User code can declare and instance of this element in the body of a
TaskDialogBody in order to provide footnote area content.

“””

	
__reduce_ex__(proto)

	An implementation of the reduce protocol.

This method creates a reduction tuple for enamldef instances. It
is not part of the public Enaml api.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
features

	Set the extra features to enable for this widget. This value must
be provided when the widget is instantiated. Runtime changes to
this value are ignored.

	
font

	The font used for the widget.

	
foreground

	The foreground color of the widget.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
maximum_size

	The maximum size for the widget. The default means that the
client should determine an intelligent maximum size.

	
minimum_size

	The minimum size for the widget. The default means that the
client should determine an intelligent minimum size.

	
name

	Export the ‘name’ attribute as a declarative member.

	
status_tip

	The status tip to show when the user hovers over the widget.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

	
tool_tip

	The tool tip to show when the user hovers over the widget.

	
class enaml.stdlib.task_dialog.TaskDialogBody(parent=None, **kwargs)

	Bases: Container

“”” A custom container used to create a task dialog body.

A TaskDialogBody element should be declared as the central widget
of a Dialog widget. The element layout logic automatically arranges
the dialog area containers declared as children.

The dialog body supports the following area children, all of which
are optional. User code should declare at most one of each type
of child:

	TaskDialogIconArea

	TaskDialogInstructionArea

	TaskDialogContentArea

	TaskDialogDetailsArea

	TaskDialogCommandArea

	TaskDialogFootnoteArea

No other widget types should be used as children of the dialog body.

“””

	
__reduce_ex__(proto)

	An implementation of the reduce protocol.

This method creates a reduction tuple for enamldef instances. It
is not part of the public Enaml api.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
features

	Set the extra features to enable for this widget. This value must
be provided when the widget is instantiated. Runtime changes to
this value are ignored.

	
font

	The font used for the widget.

	
foreground

	The foreground color of the widget.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
layout_constraints

	

	
maximum_size

	The maximum size for the widget. The default means that the
client should determine an intelligent maximum size.

	
minimum_size

	The minimum size for the widget. The default means that the
client should determine an intelligent minimum size.

	
name

	Export the ‘name’ attribute as a declarative member.

	
status_tip

	The status tip to show when the user hovers over the widget.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

	
tool_tip

	The tool tip to show when the user hovers over the widget.

 enaml.styling

enaml.styling

Classes

	Setter

	A declarative class for defining a style field setter.

	Stylable

	A mixin class for defining stylable declarative objects.

	Style

	A declarative class for defining a style sheet style.

	StyleCache

	An object which manages the styling caches.

	StyleSheet

	A declarative class for defining a widget style sheet.

	
class enaml.styling.Setter(parent=None, **kwargs)

	Bases: Declarative

A declarative class for defining a style field setter.

A Setter is declared as a child of a Style.
It defines the value to be applied to a style field.

	
field

	The style field to which this setter applies.

	
value

	The value to apply to the style field.

	
destroy()

	A reimplemented destructor.

This will notify the StyleCache when the setter is
destroyed.

	
class enaml.styling.Stylable(parent=None, **kwargs)

	Bases: Declarative

A mixin class for defining stylable declarative objects.

This class can be used as a mixin with any
Declarative class which wishes
to support style sheets.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

	
destroy()

	A reimplemented destructor.

This will notify the StyleCache when the stylable item
is destroyed.

	
style_sheet()

	Get the StyleSheet defined on the item.

	Returns:

	result – The last StyleSheet child defined on the item,
or None if the item has no such child.

	Return type:

	StyleSheet or None

	
restyle()

	Restyle the object.

This method will be called when the style dependencies for the
object have changed. It should be reimplemented in a subclass
to take appropriate action for the restyle.

	
parent_changed(old, new)

	A reimplemented parent changed event handler.

This will notify the StyleCache if the parent of
the item has changed.

	
child_added(child)

	A reimplemented child added event handler.

This will notify the StyleCache if the
StyleSheet children of the item have changed.

	
child_removed(child)

	A reimplemented child removed event handler.

This will notify the StyleCache if the
StyleSheet children of the item have changed.

	
class enaml.styling.Style(parent=None, **kwargs)

	Bases: Declarative

A declarative class for defining a style sheet style.

A Style is declared as a child of a StyleSheet.
It uses child Setter objects to define the style fields
to apply to widgets which are a match for the style.

A Style may have an arbitrary number of Setter
children.

	
element

	The type name of the element which will match the style. An
empty string will match all elements. Multiple elements can
be separated by a comma and will match using logical OR
semantics.

	
style_class

	The name of the widget style class which will match the style.
An empty string will match all style classes. Multiple classes
can be separated by a comma and will match using logical OR
semantics.

	
object_name

	The object name of the widget which will match the style. An
empty string will match all object names. Multiple object names
can be separated by a comma and will match using logical OR
semantics.

	
pseudo_class

	The pseudo-class which must be active for the style to apply. An
empty string will apply the syle for all pseudo-classes. Multiple
classes can be separated by a colon will match using logical AND
semantics. Commas can be used to separate multiple classes which
will match using logical OR semantics.

	
pseudo_element

	The pseudo-element to which the style applies. An empty string
indicates the style applies to the primary element. Multiple
pseudo elements can be separated comma and match using logical
OR semantics.

	
setters()

	Get the Setter objects declared for the style.

	Returns:

	result – The Setter objects declared for the style.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
match(item)

	Get whether or not the style matches an item.

	Parameters:

	item (Stylable) – The item to test for a style match.

	Returns:

	result – The match value for the item. A value less than zero
indicates no match. A value greater than or equal to zero
indicates a match and the specificity of the match.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
destroy()

	A reimplemented destructor.

This will notify the StyleCache when the style is
destroyed.

	
child_added(child)

	A reimplemented child added event handler.

This will notify the StyleCache if the Setter
children of the style have changed.

	
child_removed(child)

	A reimplemented child removed event handler.

This will notify the StyleCache if the Setter
children of the style have changed.

	
class enaml.styling.StyleCache(*args, **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

An object which manages the styling caches.

All interaction with this class is through public class methods.
This class should be used by code which implements the styling for
a stylable item. The public API methods can be used to query for
the Style object which matchs a Stylable item.

	
classmethod style_sheets(item)

	Get the StyleSheet objects which apply to an item.

	Parameters:

	item (Stylable) – The stylable item of interest.

	Returns:

	result – The StyleSheet objects which apply to the item,
in order of ascending precedence.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
classmethod styles(item)

	Get the Style objects which apply to an item.

	Parameters:

	item (Stylable) – The stylable item of interest.

	Returns:

	result – The Style objects which apply to the item, in
order of ascending precedence.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
classmethod toolkit_setter(setter, translate)

	Get the toolkit representation of a setter.

This method will return the cached toolkit setter, if available,
or invoke the translator to create the cached setter. The cached
toolkit setter will be cleared when the setter is invalidated.

	Parameters:

	
	setter (Setter) – The style setter of interest.

	translate (callable) – A callable which accepts a single Setter argument
and returns a toolkit representation of the setter. The
returned value is cached until the setter is invalidated.

	Returns:

	result – The toolkit representation of the setter.

	Return type:

	object [https://docs.python.org/3/library/functions.html#object]

	
static __new__(cls, *args, **kwargs)

	

	
__weakref__

	list of weak references to the object (if defined)

	
class enaml.styling.StyleSheet(parent=None, **kwargs)

	Bases: Declarative

A declarative class for defining a widget style sheet.

A StyleSheet is declared as a child of a Stylable
widget. It uses child Style objects to apply styling to its
parent widget and all of the widget’s decendents. A
StyleSheet can also be provided to the global
Application, in which case
the styling will be applied to all stylable widgets. The effective
style sheet for a widget is the union of all its ancestor style
sheets plus the application style sheet.

A StyleSheet may have an arbitrary number of Style
children. The child style objects are applied to a widget in the
order of their match specificity within the style sheet.

	
destroy()

	A reimplemented destructor.

This will notify the StyleCache when the style sheet
is destroyed.

	
styles()

	Get the Style objects declared for the style sheet.

	Returns:

	result – The Style objects declared for the style sheet.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
child_added(child)

	A reimplemented child added event handler.

This will notify the StyleCache if the Style
children of the style sheet have changed.

	
child_removed(child)

	A reimplemented child removed event handler.

This will notify the StyleCache if the Style
children of the style sheet have changed.

 enaml.validator

enaml.validator

Classes

	FloatValidator

	A concrete Validator which handles floating point input.

	IntValidator

	A concrete Validator which handles integer input.

	RegexValidator

	A concrete Validator which handles text input.

	Validator

	The base class for creating widget text validators.

	
class enaml.validator.FloatValidator

	Bases: Validator

A concrete Validator which handles floating point input.

This validator ensures that the text represents a floating point
number within a specified range.

	
minimum

	The minimum value allowed for the float, inclusive, or None if
there is no lower bound.

	
maximum

	The maximum value allowed for the float, inclusive, or None if
there is no upper bound.

	
allow_exponent

	Whether or not to allow exponents like ‘1e6’ in the input.

	
validate(text)

	Validates the given text matches the float range.

	Parameters:

	text (unicode) – The unicode text edited by the client widget.

	Returns:

	result – True if the text is valid, False otherwise.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
class enaml.validator.IntValidator

	Bases: Validator

A concrete Validator which handles integer input.

This validator ensures that the text represents an integer within a
specified range in a specified base.

	
minimum

	The minimum value allowed for the int, inclusive, or None if
there is no lower bound.

	
maximum

	The maximum value allowed for the int, inclusive, or None if
there is no upper bound.

	
base

	The base in which the int is represented.

	
validate(text)

	Validates the given text matches the integer range.

	Parameters:

	text (unicode) – The unicode text edited by the client widget.

	Returns:

	result – True if the text is valid, False otherwise.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
class enaml.validator.RegexValidator

	Bases: Validator

A concrete Validator which handles text input.

This validator ensures that the text matches a provided regular
expression string.

	
regex

	The regular expression string to use for validation. The default
regex matches everything.

	
validate(text)

	Validates the given text matches the regular expression.

	Parameters:

	text (unicode) – The unicode text edited by the client widget.

	Returns:

	result – True if the text is valid, False otherwise.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
class enaml.validator.Validator

	Bases: Atom

The base class for creating widget text validators.

This class is abstract. It’s abstract api must be implemented by a
subclass in order to be usable.

	
message

	An optional message to associate with the validator. This message
may be used by the toolkit to display information to the user
about what went wrong.

	
validate(text)

	Validate the text as the user types.

This method is called on every keystroke to validate the text
as the user inputs characters. It should be efficient. This is
an abstract method which must be implemented by subclasses.

	Parameters:

	text (unicode) – The unicode text entered by the user.

	Returns:

	result – True if the text is valid, False otherwise.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
fixup(text)

	An optional method to fix invalid user input.

This method will be called if user attempts to apply text which
is not valid. This method may convert the text to a valid form.
The returned text will be retested for validity. The default
implementation of this method is a no-op.

	Returns:

	result – The optionally modified input text.

	Return type:

	unicode

 enaml.version

enaml.version

Data

	version_info

	_version_info(major, minor, micro, status)

	
enaml.version.version_info = (0, 17, 1, 'dev16+gbf0ea6f')

	_version_info(major, minor, micro, status)

 enaml.widgets

enaml.widgets

Modules

	abstract_button

	

	action

	

	action_group

	

	bounded_date

	

	bounded_datetime

	

	bounded_time

	

	button_group

	

	calendar

	

	check_box

	

	color_dialog

	

	combo_box

	

	constraints_widget

	

	container

	

	control

	

	datetime_selector

	

	date_selector

	

	dialog

	

	dock_area

	

	dock_events

	

	dock_item

	

	dock_pane

	

	dual_slider

	

	field

	

	file_dialog

	

	file_dialog_ex

	

	flow_area

	

	flow_item

	

	form

	

	frame

	

	group_box

	

	html

	

	image_view

	

	ipython_console

	

	label

	

	main_window

	

	mdi_area

	

	mdi_window

	

	menu

	

	menu_bar

	

	mpl_canvas

	

	multiline_field

	

	notebook

	

	object_combo

	

	page

	

	popup_view

	

	progress_bar

	

	push_button

	

	radio_button

	

	raw_widget

	

	scroll_area

	

	separator

	

	slider

	

	spin_box

	

	splitter

	

	split_item

	

	stack

	

	stack_item

	

	status_bar

	

	status_item

	

	timer

	

	time_selector

	

	toolkit_dialog

	

	toolkit_object

	

	tool_bar

	

	web_view

	

	widget

	

	window

	

 enaml.widgets.abstract_button

enaml.widgets.abstract_button

Classes

	AbstractButton

	A base class for creating button-like controls.

	
class enaml.widgets.abstract_button.AbstractButton(parent=None, **kwargs)

	Bases: Control

A base class for creating button-like controls.

	
text

	The text to use as the button’s label.

	
icon

	The source url for the icon to use for the button.

	
icon_size

	The size to use for the icon. The default is an invalid size
and indicates that an appropriate default should be used.

	
group

	Group to which this button belongs to.

	
checkable

	Whether or not the button is checkable. The default is False.

	
checked

	Whether a checkable button is currently checked.

	
clicked

	Fired when the button is pressed then released. The payload will
be the current checked state. This event is triggered by the
proxy object when the button is clicked.

	
toggled

	Fired when a checkable button is toggled. The payload will be
the current checked state. This event is triggered by the
proxy object when a togglable button is toggled.

	
hug_width

	Buttons hug their contents’ width weakly by default.

	
proxy

	A reference to the ProxyAbstractButton object.

	
__init__(parent=None, **kwargs)

	Initialize an Object.

	Parameters:

	
	parent (Object or None, optional) – The Object instance which is the parent of this object, or
None if the object has no parent. Defaults to None.

	**kwargs – Additional keyword arguments to apply as attributes to the
object.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

 enaml.widgets.action

enaml.widgets.action

Classes

	Action

	A non visible widget used in a ToolBar or Menu.

	
class enaml.widgets.action.Action(parent=None, **kwargs)

	Bases: ToolkitObject

A non visible widget used in a ToolBar or Menu.

An Action represents an actionable item in a ToolBar or a Menu.
Though an Action itself is a non-visible component, it will be
rendered in an appropriate fashion for the location where it is
used.

	
text

	The text label associate with the action.

	
tool_tip

	The tool tip text to use for this action. Typically displayed
as a small label when the user hovers over the action.

	
status_tip

	The text that is displayed in the status bar when the user
hovers over the action.

	
icon

	The icon to use for the Action.

	
checkable

	Whether or not the action can be checked.

	
checked

	Whether or not the action is checked. This value only has meaning
if ‘checkable’ is set to True.

	
enabled

	Whether or not the item representing the action is enabled.

	
visible

	Whether or not the item representing the action is visible.

	
separator

	Whether or not the action should be treated as a separator. If
this value is True, none of the other values have meaning.

	
triggered

	An event fired when the action is triggered by user interaction.
They payload will be the current checked state. This event is
triggered by the proxy object when the action is triggerd.

	
toggled

	An event fired when a checkable action changes its checked state.
The payload will be the current checked state. This event is
triggerd by the proxy object when the action is toggled.

	
proxy

	A reference to the ProxyAction object.

 enaml.widgets.action_group

enaml.widgets.action_group

Classes

	ActionGroup

	A non visible widget used to group actions.

	
class enaml.widgets.action_group.ActionGroup(parent=None, **kwargs)

	Bases: ToolkitObject

A non visible widget used to group actions.

An action group can be used in a MenuBar or a ToolBar to group a
related set of Actions and apply common operations to the set. The
primary use of an action group is to make any checkable actions in
the group mutually exclusive.

	
exclusive

	Whether or not the actions in this group are exclusive.

	
enabled

	Whether or not the actions in this group are enabled.

	
visible

	Whether or not the actions in this group are visible.

	
proxy

	A reference to the ProxyActionGroup object.

	
actions()

	Get Actions defined as children of the ActionGroup.

 enaml.widgets.bounded_date

enaml.widgets.bounded_date

Classes

	BoundedDate

	A base class for components which edit a Python datetime.date object bounded between minimum and maximum values.

	
class enaml.widgets.bounded_date.BoundedDate(parent=None, **kwargs)

	Bases: Control

A base class for components which edit a Python datetime.date
object bounded between minimum and maximum values.

This class is not meant to be used directly.

	
minimum

	The minimum date available in the date edit. If the minimum value
is changed such that it becomes greater than the current value or
the maximum value, then those values will be adjusted. The default
value is September 14, 1752.

	
maximum

	The maximum date available in the date edit. If the maximum value
is changed such that it becomes smaller than the current value or
the minimum value, then those values will be adjusted. The default
value is December 31, 7999.

	
date

	The date in the control. This will be clipped to the supplied
maximum and minimum values. The default is date.today().

	
proxy

	A reference to the ProxyBoundedDate object.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

 enaml.widgets.bounded_datetime

enaml.widgets.bounded_datetime

Classes

	BoundedDatetime

	A base class for use with widgets that edit a Python datetime.datetime object bounded between minimum and maximum values.

	
class enaml.widgets.bounded_datetime.BoundedDatetime(parent=None, **kwargs)

	Bases: Control

A base class for use with widgets that edit a Python
datetime.datetime object bounded between minimum and maximum
values. This class is not meant to be used directly.

	
minimum

	The minimum datetime available in the datetime edit. If not
defined then the default value is midnight September 14, 1752.

	
maximum

	The maximum datetime available in the datetime edit. If not
defined then the default value is the second before midnight
December 31, 7999.

	
datetime

	The currently selected date. Default is datetime.now(). The
value is bounded between minimum and maximum.

	
proxy

	A reference to the ProxyBoundedDatetime object.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

 enaml.widgets.bounded_time

enaml.widgets.bounded_time

Classes

	BoundedTime

	A base class for use with widgets that edit a Python datetime.time object bounded between minimum and maximum values.

	
class enaml.widgets.bounded_time.BoundedTime(parent=None, **kwargs)

	Bases: Control

A base class for use with widgets that edit a Python
datetime.time object bounded between minimum and maximum
values. This class is not meant to be used directly.

	
minimum

	The minimum time available in the datetime edit. The default value
is midnight.

	
maximum

	The maximum time available in the datetime edit. The default is
one second before midnight.

	
time

	The currently selected time. Default is datetime.now().time().
The value is clipped between minimum and maximum.

	
proxy

	A reference to the ProxyBoundedTime object.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

 enaml.widgets.button_group

enaml.widgets.button_group

Classes

	ButtonGroup

	A way to declare a group of buttons.

	
class enaml.widgets.button_group.ButtonGroup(parent=None, **kwargs)

	Bases: ToolkitObject

A way to declare a group of buttons.

This allows to group buttons even though they belong to different
container. Note that if a button belongs to a ButtonGroup the rules
about buttons sharing a container being in the same group do not apply.d2

	
group_members

	Set of members belonging to the group.
This value should be considered read-only for users.

	
exclusive

	Can only a single button in the group be checked at a time.

	
proxy

	A reference to the ProxyButtonGroup object.

 enaml.widgets.calendar

enaml.widgets.calendar

Classes

	Calendar

	A bounded date control which edits a Python datetime.date using a widget which resembles a calendar.

	
class enaml.widgets.calendar.Calendar(parent=None, **kwargs)

	Bases: BoundedDate

A bounded date control which edits a Python datetime.date using
a widget which resembles a calendar.

	
proxy

	A reference to the ProxyCalendar object.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

 enaml.widgets.check_box

enaml.widgets.check_box

Classes

	CheckBox

	An checkable button represented by a standard check box widget.

	
class enaml.widgets.check_box.CheckBox(parent=None, **kwargs)

	Bases: AbstractButton

An checkable button represented by a standard check box widget.

Use a check box when it’s necessary to toggle a boolean value
independent of any other widgets in a group.

When its necessary to allow the toggling of only one value in a
group of values, use a group of RadioButtons or the RadioGroup
control from the Enaml standard library.

The interface for AbstractButton fully defines the interface for
a CheckBox.

	
checkable

	Check boxes are checkable by default.

	
proxy

	A reference to the ProxyPushButton object.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

 enaml.widgets.color_dialog

enaml.widgets.color_dialog

Classes

	ColorDialog

	A toolkit dialog that allows the user to select a color.

	
class enaml.widgets.color_dialog.ColorDialog(parent=None, **kwargs)

	Bases: ToolkitDialog

A toolkit dialog that allows the user to select a color.

	
current_color

	The currently selected color of the dialog.

	
show_alpha

	Whether or not to show the alpha value control.

	
show_buttons

	Whether or not to show the dialog ok/cancel buttons.

	
selected_color

	The color selected when the user clicks accepts the dialog.
This value is output only.

	
proxy

	A reference to the ProxyColorDialog object.

	
static get_color(parent=None, **kwargs)

	A static method which launches a color dialog.

	Parameters:

	
	parent (ToolkitObject or None) – The parent toolkit object for this dialog.

	**kwargs – Additional data to pass to the dialog constructor.

	Returns:

	result – The selected color or None if no color was selected.

	Return type:

	Color or None

	
static custom_count()

	Get the number of available custom colors.

The custom colors are shared among all color dialogs.

	Returns:

	result – The number of available custom colors.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

Notes

The Application object must exist before calling this method.

	
static custom_color(index)

	Get the custom color for the given index.

The custom colors are shared among all color dialogs.

	Parameters:

	index (int [https://docs.python.org/3/library/functions.html#int]) – The integer index of the custom color.

	Returns:

	result – The custom color for the index.

	Return type:

	Color

Notes

The Application object must exist before calling this method.

	
static set_custom_color(index, color)

	Set the custom color for the given index.

The custom colors are shared among all color dialogs.

	Parameters:

	
	index (int [https://docs.python.org/3/library/functions.html#int]) – The integer index of the custom color.

	color (Color) – The custom color to set for the index

Notes

The Application object must exist before calling this method.

 enaml.widgets.combo_box

enaml.widgets.combo_box

Classes

	ComboBox

	A drop-down list from which one item can be selected at a time.

	
class enaml.widgets.combo_box.ComboBox(parent=None, **kwargs)

	Bases: Control

A drop-down list from which one item can be selected at a time.

Use a combo box to select a single item from a collection of items.

See ObjectCombo for a more robust combo box control.

	
items

	The strings to display in the combo box.

	
index

	The integer index of the currently selected item. If the index
falls outside the range of items, the item will be deselected.

	
selected_item

	A read only cached property which returns the selected item.

	
editable

	Whether the text in the combo box can be edited by the user.

	
hug_width

	A combo box hugs its width weakly by default.

	
proxy

	A reference to the ProxyComboBox object.

	
get_selected_item()

	The getter function for the selected item property.

If the index falls out of range, the selected item will be an
empty string.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

 enaml.widgets.constraints_widget

enaml.widgets.constraints_widget

Classes

	ConstraintsWidget

	A Widget subclass which adds constraint information.

	
class enaml.widgets.constraints_widget.ConstraintsWidget(parent=None, **kwargs)

	Bases: Widget, ConstrainableMixin

A Widget subclass which adds constraint information.

A ConstraintsWidget is augmented with symbolic constraint variables
which define a box model on the widget. This box model is used to
declare constraints between this widget and other components which
participate in constraints-based layout.

Constraints are added to a widget by assigning a list to the
‘constraints’ attribute. This list may contain raw Constraint
objects, which are created by manipulating the symbolic constraint
variables, or ConstraintHelper objects which generate Constraint
objects on request.

	
constraints

	The list of user-specified constraints or ConstraintHelpers.

	
hug_width

	How strongly a widget hugs it’s width hint. This is equivalent
to the constraint:

(width == hint) | hug_width

	
hug_height

	How strongly a widget hugs it’s height hint. This is equivalent
to the constraint:

(height == hint) | hug_height

	
resist_width

	How strongly a widget resists clipping its width hint. This is
equivalent to the constraint:

(width >= hint) | resist_width

	
resist_height

	How strongly a widget resists clipping its height hint. This is
equivalent to the constraint:

(height >= hint) | resist_height

	
limit_width

	How strongly a widget resists expanding its width hint. This is
equivalent to the constraint:

(width <= hint) | limit_width

	
limit_height

	How strongly a widget resists expanding its height hint. This is
equivalent to the constraint:

(height <= hint) | limit_height

	
proxy

	A reference to the ProxyConstraintsWidget object.

	
request_relayout()

	Request a relayout from the proxy widget.

This will invoke the ‘request_relayout’ method on an active
proxy. The proxy should collapse the requests as necessary.

	
when(switch)

	A method which returns self or None based on the truthness
of the argument.

This can be useful to easily turn off the effects of an object
in constraints-based layout.

	Parameters:

	switch (bool [https://docs.python.org/3/library/functions.html#bool]) – A boolean which indicates whether this instance or None
should be returned.

	Returns:

	result – If ‘switch’ is boolean True, self is returned. Otherwise,
None is returned.

	Return type:

	self or None

	
layout_constraints()

	Get the constraints to use for this component’s layout.

This method may be overridden by subclasses as needed to create
custom constraints. It will be called when the relayout request
has been made by the layout engine. The default implementation
will return the list of ‘constraints’ defined by the user.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

	
visible

	Whether or not the widget is visible.

 enaml.widgets.container

enaml.widgets.container

Classes

	Container

	A Frame subclass which provides child layout functionality.

	
class enaml.widgets.container.Container(parent=None, **kwargs)

	Bases: Frame, ContentsConstrainableMixin

A Frame subclass which provides child layout functionality.

The Container is the canonical component used to arrange child
widgets using constraints-based layout. The developer can supply
a list of constraints on the container which specify how to layout
it’s child widgets.

There are widgets whose boundaries constraints may not cross. Some
examples of these would be a ScrollArea or a Notebook. See the
documentation of a given widget as to whether or not constraints
may cross its boundaries.

	
share_layout

	A boolean which indicates whether or not to allow the layout
ownership of this container to be transferred to an ancestor.
This is False by default, which means that every container
get its own layout solver. This improves speed and reduces
memory use (by keeping a solver’s internal tableaux small)
but at the cost of not being able to share constraints
across Container boundaries. This flag must be explicitly
marked as True to enable sharing.

	
padding

	A box object which holds the padding for this component. The
padding is the amount of space between the outer boundary box
and the content box. The default padding is 10 pixels a side.
Certain subclasses, such as GroupBox, may provide additional
margin than what is specified by the padding.

	
resist_width

	A Container does not generate constraints for its size hint by
default. The minimum and maximum size constraints are sufficient
to supply size limits and make for the most natural interaction
between nested containers.

	
resist_height

	How strongly a widget resists clipping its height hint. This is
equivalent to the constraint:

(height >= hint) | resist_height

	
hug_width

	How strongly a widget hugs it’s width hint. This is equivalent
to the constraint:

(width == hint) | hug_width

	
hug_height

	How strongly a widget hugs it’s height hint. This is equivalent
to the constraint:

(height == hint) | hug_height

	
proxy

	A reference to the ProxyContainer object.

	
widgets()

	Get the child ConstraintsWidgets defined on the container.

	
visible_widgets()

	Get the visible child ConstraintsWidgets on the container.

	
child_added(child)

	Handle the child added event on the container.

This event handler will request a relayout if the added child
is an instance of ‘ConstraintsWidget’.

	
child_moved(child)

	Handle the child moved event on the container.

This event handler will request a relayout if the moved child
is an instance of ‘ConstraintsWidget’.

	
child_removed(child)

	Handle the child removed event on the container.

This event handler will request a relayout if the removed child
is an instance of ‘ConstraintsWidget’.

	
layout_constraints()

	The constraints generation for a Container.

This method supplies default vbox constraints to the visible
children of the container unless the user has given explicit
‘constraints’.

This method may also be overridden from Enaml syntax.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
features

	Set the extra features to enable for this widget. This value must
be provided when the widget is instantiated. Runtime changes to
this value are ignored.

	
font

	The font used for the widget.

	
foreground

	The foreground color of the widget.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
maximum_size

	The maximum size for the widget. The default means that the
client should determine an intelligent maximum size.

	
minimum_size

	The minimum size for the widget. The default means that the
client should determine an intelligent minimum size.

	
name

	Export the ‘name’ attribute as a declarative member.

	
status_tip

	The status tip to show when the user hovers over the widget.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

	
tool_tip

	The tool tip to show when the user hovers over the widget.

 enaml.widgets.control

enaml.widgets.control

Classes

	Control

	A widget which represents a leaf node in the hierarchy.

	
class enaml.widgets.control.Control(parent=None, **kwargs)

	Bases: ConstraintsWidget

A widget which represents a leaf node in the hierarchy.

A Control is conceptually the same as a ConstraintsWidget, except
that it does not have widget children. This base class serves as
a placeholder for potential future functionality.

	
proxy

	A reference to the proxy Control object.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

 enaml.widgets.datetime_selector

enaml.widgets.datetime_selector

Classes

	DatetimeSelector

	A widget to edit a Python datetime.datetime object.

	
class enaml.widgets.datetime_selector.DatetimeSelector(parent=None, **kwargs)

	Bases: BoundedDatetime

A widget to edit a Python datetime.datetime object.

This is a geometrically smaller control than what is provided by
Calendar.

	
datetime_format

	A python date format string to format the datetime. If None is
supplied (or is invalid) the system locale setting is used.
This may not be supported by all backends.

	
calendar_popup

	Whether to use a calendar popup for selecting the date.

	
hug_width

	A datetime selector expands freely in width by default

	
proxy

	A reference to the ProxyDateSelector object.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

 enaml.widgets.date_selector

enaml.widgets.date_selector

Classes

	DateSelector

	A widget to edit a Python datetime.date object.

	
class enaml.widgets.date_selector.DateSelector(parent=None, **kwargs)

	Bases: BoundedDate

A widget to edit a Python datetime.date object.

A DateSelector displays a Python datetime.date using an appropriate
toolkit specific control. This is a geometrically smaller control
than what is provided by Calendar.

	
date_format

	A python date format string to format the date for display.
If none is supplied (or is invalid) the system locale setting
is used. This may not be supported by all backends.

	
calendar_popup

	Whether to use a calendar popup for selecting the date.

	
hug_width

	A date selector expands freely in width by default.

	
proxy

	A reference to the ProxyDateSelector object.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

 enaml.widgets.dialog

enaml.widgets.dialog

Classes

	Dialog

	A top-level Window class for creating dialogs.

	
class enaml.widgets.dialog.Dialog(parent=None, **kwargs)

	Bases: Window

A top-level Window class for creating dialogs.

	
result

	The result of the dialog. This value is updated before any of
the related dialog events are fired.

	
finished

	An event fired when the dialog is finished. The payload will be
the boolean result of the dialog. This event is fired before
the ‘accepted’ or rejected event.

	
accepted

	An event fired when the dialog is accepted.

	
rejected

	An event fired when the dialog is rejected.

	
modality

	Dialogs are application modal by default.

	
proxy

	A reference to the ProxyDialog object.

	
exec_()

	Launch the dialog as a modal window.

This call will block until the dialog is closed.

	Returns:

	result – The result value of the dialog.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
done(result)

	Close the dialog and set the result value.

This will cause a call to exec_ to return.

	Parameters:

	result (bool [https://docs.python.org/3/library/functions.html#bool]) – The result value for the dialog.

	
accept()

	Close the dialog and set the result to True.

	
reject()

	Close the dialog and set the result to False.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

 enaml.widgets.dock_area

enaml.widgets.dock_area

Classes

	DockArea

	A component which arranges dock item children.

	
class enaml.widgets.dock_area.DockArea(parent=None, **kwargs)

	Bases: ConstraintsWidget

A component which arranges dock item children.

	
layout

	The layout of dock items for the area. This attribute is not
kept in sync with the layout state of the widget at runtime. The
‘save_layout’ method should be called to retrieve the current
layout state.

	
tab_position

	The default tab position for newly created dock tabs.

	
live_drag

	Whether the dock items resize as a dock splitter is being dragged
(True), or if a simple indicator is drawn until the drag handle
is released (False). The default is True.

	
style

	The name of the registered style to apply to the dock area. The
list of available styles can be retrieved by calling the function
available_styles in the enaml.stdlib.dock_area_styles module.
The default is a style inspired by Visual Studio 2010

Users can also define and use their own custom style sheets with
the dock area. Simply set this attribute to an empty string so
the default styling is disabled, and proceed to use style sheets
as with any other widget (see the stdlib styles for inspiration).

Only one mode of styling should be used for the dock area at a
time. Using both modes simultaneously is undefined.

	
dock_events_enabled

	Whether or not dock events are enabled for the area.

	
dock_event

	An event emitted when a dock event occurs in the dock area.
dock_events_enabled must be True in order to recieve events.

	
hug_width

	A Stack expands freely in height and width by default

	
hug_height

	How strongly a widget hugs it’s height hint. This is equivalent
to the constraint:

(height == hint) | hug_height

	
proxy

	A reference to the ProxyStack widget.

	
initialize()

	A reimplemented initializer method.

This method ensures the internal style sheet is created.

	
dock_items()

	Get the dock items defined on the stack

	
save_layout()

	Save the current layout state of the dock area.

	Returns:

	result – The current layout state of the dock area.

	Return type:

	docklayout

	
apply_layout(layout)

	Apply a new layout to the dock area.

	Parameters:

	layout (DockLayout) – The dock layout to apply to the dock area.

	
update_layout(ops)

	Update the layout configuration using layout operations.

	Parameters:

	ops (DockLayoutOp or iterable) – A single DockLayoutOp instance or an iterable of the same.
The operations will be executed in order. If a given op is
not valid for the current layout state, it will be skipped.

	
suppress_dock_events()

	A context manager which supresses dock events.

This manager will disable dock events for the duration of the
context, and restore the old value upon exit.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

 enaml.widgets.dock_events

enaml.widgets.dock_events

Classes

	DockEvent

	A sentinel base class for events which occur in a dock area.

	DockItemEvent

	A DockEvent for events which involve a single dock item.

	
class enaml.widgets.dock_events.DockEvent

	Bases: Atom

A sentinel base class for events which occur in a dock area.

	
class enaml.widgets.dock_events.DockItemEvent

	Bases: DockEvent

A DockEvent for events which involve a single dock item.

	
class Type(value)

	Bases: IntEnum [https://docs.python.org/3/library/enum.html#enum.IntEnum]

An IntEnum which defines the dock item event types.

	
Docked = 0

	The dock item was docked in a dock area.

	
Undocked = 1

	The dock item was undocked from a dock area.

	
Extended = 2

	The dock item was extended from a dock bar.

	
Retracted = 3

	The dock item was retracted into a dock bar.

	
Shown = 4

	The dock item was shown on the screen.

	
Hidden = 5

	The dock item was hidden from the screen.

	
Closed = 6

	The dock item was closed.

	
TabSelected = 7

	The dock item became the selected tab in a tab group.

	
type

	The type of the dock item event.

	
name

	The name of the relevant dock item.

 enaml.widgets.dock_item

enaml.widgets.dock_item

Classes

	DockItem

	A widget which can be docked in a DockArea.

	
class enaml.widgets.dock_item.DockItem(parent=None, **kwargs)

	Bases: Widget

A widget which can be docked in a DockArea.

A DockItem is a widget which can be docked inside of a DockArea. It
can have at most a single Container child widget.

	
title

	The title to use in the title bar.

	
title_editable

	Whether or the not the title is user editable.

	
title_bar_visible

	Whether or not the title bar is visible.

	
icon

	The icon to use in the title bar.

	
icon_size

	The size to use for the icon in the title bar.

	
stretch

	The stretch factor for the item when docked in a splitter.

	
closable

	Whether or not the dock item is closable via a close button.

	
title_bar_right_clicked

	An event emitted when the title bar is right clicked.

	
closing

	An event fired when the user request the dock item to be closed.
This will happen when the user clicks on the “X” button in the
title bar button, or when the ‘close’ method is called. The
payload will be a CloseEvent object which will allow code to
veto the close event and prevent the item from closing.

	
closed

	An event emitted when the dock item is closed. The item will be
destroyed after this event has completed.

	
proxy

	A reference to the ProxyDockItem object.

	
dock_widget()

	Get the dock widget defined for the dock pane.

The last child Container is considered the dock widget.

	
alert(level, on=250, off=250, repeat=4, persist=False)

	Set the alert level on the dock item.

This will override any currently applied alert level.

	Parameters:

	
	level (unicode) – The alert level token to apply to the dock item.

	on (int [https://docs.python.org/3/library/functions.html#int]) – The duration of the ‘on’ cycle, in ms. A value of -1 means
always on.

	off (int [https://docs.python.org/3/library/functions.html#int]) – The duration of the ‘off’ cycle, in ms. If ‘on’ is -1, this
value is ignored.

	repeat (int [https://docs.python.org/3/library/functions.html#int]) – The number of times to repeat the on-off cycle. If ‘on’ is
-1, this value is ignored.

	persist (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to leave the alert in the ‘on’ state when the cycles
finish. If ‘on’ is -1, this value is ignored.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

 enaml.widgets.dock_pane

enaml.widgets.dock_pane

Classes

	DockPane

	A widget which can be docked in a MainWindow.

	
class enaml.widgets.dock_pane.DockPane(parent=None, **kwargs)

	Bases: Widget

A widget which can be docked in a MainWindow.

A DockPane is a widget which can be docked in designated dock areas
in a MainWindow. It can have at most a single child widget which is
an instance of Container.

	
title

	The title to use in the title bar.

	
title_bar_visible

	Whether or not the title bar is visible.

	
title_bar_orientation

	The orientation of the title bar.

	
closable

	Whether or not the dock pane is closable via a close button.

	
movable

	Whether or not the dock pane is movable by the user.

	
floatable

	Whether or not the dock can be floated as a separate window.

	
floating

	A boolean indicating whether or not the dock pane is floating.

	
dock_area

	The dock area in the MainWindow where the pane is docked.

	
allowed_dock_areas

	The dock areas in the MainWindow where the pane can be docked
by the user. Note that this does not preclude the pane from
being docked programmatically via the ‘dock_area’ attribute.

	
closed

	An event fired when the user closes the pane by clicking on the
dock pane’s close button.

	
proxy

	A reference to the ProxyDockPane object.

	
dock_widget()

	Get the dock widget defined for the dock pane.

The last child Container is considered the dock widget.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

 enaml.widgets.dual_slider

enaml.widgets.dual_slider

Classes

	DualSlider

	A simple dual slider widget.

	
class enaml.widgets.dual_slider.DualSlider(parent=None, **kwargs)

	Bases: Control

A simple dual slider widget.

A dual slider can be used to select a range within a larger range
of integral values.

	
minimum

	The minimum slider value. If the minimum value is changed such
that it becomes greater than the current value or the maximum
value, then those values will be adjusted. The default is 0.

	
maximum

	The maximum slider value. If the maximum value is changed such
that it becomes smaller than the current value or the minimum
value, then those values will be adjusted. The default is 100.

	
low_value

	The low position value of the DualSlider. The value will be
clipped to always fall between the minimum and maximum and be
smaller than the high value.

	
high_value

	The high position value of the DualSlider. The value will be
clipped to always fall between the minimum and maximum and be
larger than the low value.

	
tick_position

	A TickPosition enum value indicating how to display the tick
marks. Note that the orientation takes precedence over the tick
mark position and an incompatible tick position will be adapted
according to the current orientation. The default tick position
is ‘bottom’.

	
tick_interval

	The interval to place between slider tick marks in value units
(as opposed to pixels). The minimum value is 0, which indicates
that the choice is left up to the client.

	
orientation

	The orientation of the slider. The default is ‘horizontal’. When
the orientation is flipped the tick positions (if set) also adapt
to reflect the changes (e.g. the LEFT becomes TOP when the
orientation becomes horizontal).

	
auto_hug

	Whether or not to automatically adjust the ‘hug_width’ and
‘hug_height’ values based on the value of ‘orientation’.

	
proxy

	A reference to the ProxyDualSlider object.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
hug_height

	How strongly a widget hugs it’s height hint. This is equivalent
to the constraint:

(height == hint) | hug_height

	
hug_width

	How strongly a widget hugs it’s width hint. This is equivalent
to the constraint:

(width == hint) | hug_width

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

 enaml.widgets.field

enaml.widgets.field

Classes

	Field

	A single line editable text widget.

	
class enaml.widgets.field.Field(parent=None, **kwargs)

	Bases: Control

A single line editable text widget.

	
text

	The unicode text to display in the field.

	
mask

	The mask to use for text input
http://qt-project.org/doc/qt-4.8/qlineedit.html#inputMask-prop

The summary of the mask grammar is as follows:
A ASCII alphabetic character required. A-Z, a-z.
a ASCII alphabetic character permitted but not required.
N ASCII alphanumeric character required. A-Z, a-z, 0-9.
n ASCII alphanumeric character permitted but not required.
X Any character required.
x Any character permitted but not required.
9 ASCII digit required. 0-9.
0 ASCII digit permitted but not required.
D ASCII digit required. 1-9.
d ASCII digit permitted but not required (1-9).
ASCII digit or plus/minus sign permitted but not required.
H Hexadecimal character required. A-F, a-f, 0-9.
h Hexadecimal character permitted but not required.
B Binary character required. 0-1.
b Binary character permitted but not required.
> All following alphabetic characters are uppercased.
< All following alphabetic characters are lowercased.
! Switch off case conversion.
 Use to escape the special characters listed above to use them as separators.

The mask consists of a string of mask characters and separators, optionally
followed by a semicolon and the character used for blanks
Eg: 9 digit phone number: (999) 999-9999;_

	
validator

	The validator to use for this field. If the validator provides
a client side validator, then text will only be submitted if it
passes that validator.

	
submit_triggers

	The list of actions which should cause the client to submit its
text to the server for validation and update. The currently
supported values are ‘lost_focus’, ‘return_pressed’, and ‘auto_sync’.
The ‘auto_sync’ mode will attempt to validate and synchronize the
text when the user stops typing.

	
sync_time

	Time in ms after which the client submit its text to the server for
validation and update when the user stop typing. This is used only when
the ‘auto_sync’ mode is part of the submit_triggers.

	
placeholder

	The grayed-out text to display if the field is empty and the
widget doesn’t have focus. Defaults to the empty string.

	
echo_mode

	How to display the text in the field. Valid values are ‘normal’
which displays the text as normal, ‘password’ which displays the
text with an obscured character, and ‘silent’ which displays no
text at all but still allows input.

	
max_length

	The maximum length of the field in characters. The default value
is Zero and indicates there is no maximum length.

	
read_only

	Whether or not the field is read only. Defaults to False.

	
text_align

	Alignment for the text inside the field. Defaults to ‘left’.

	
hug_width

	How strongly a component hugs it’s contents’ width. Fields ignore
the width hug by default, so they expand freely in width.

	
proxy

	A reference to the ProxyField object.

	
field_text()

	Get the text stored in the field control.

Depending on the state of the field, this text may be different
than that stored in the ‘text’ attribute.

	Returns:

	result – The unicode text stored in the field.

	Return type:

	unicode

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

 enaml.widgets.file_dialog

enaml.widgets.file_dialog

Classes

	FileDialog

	A dialog widget that allows the user to open and save files and directories.

	
class enaml.widgets.file_dialog.FileDialog(parent=None, **kwargs)

	Bases: ToolkitObject

A dialog widget that allows the user to open and save files and
directories.

	
title

	The title to use for the dialog.

	
mode

	The mode of the dialog.

	
path

	The selected path in the dialog. This value will be used to set
the initial working directory and file, as appropriate, when the
dialog is opened. It will aslo be updated when the dialog is
closed and accepted.

	
paths

	The list of selected paths in the dialog. It will be updated
when the dialog is closed and accepted. It is output only and
is only applicable for the open_files mode.

	
filters

	The string filters used to restrict the user’s selections.

	
selected_filter

	The selected filter from the list of filters. This value will be
used as the initial working filter when the dialog is opened. It
will also be updated when the dialog is closed and accepted.

	
native_dialog

	Whether to use a platform native dialog, when available. This
attribute is deprecated and no longer has any effect. Native
dialogs are always used when available in a given toolkit.

	
result

	An enum indicating if the dialog was accepted or rejected by
the user. It will be updated when the dialog is closed. This
value is output only.

	
callback

	An optional callback which will be invoked when the dialog is
closed. This is a convenience to make it easier to handle a
dialog opened in non-blocking mode. The callback must accept
a single argument, which will be the dialog instance.

	
accepted

	An event fired if the dialog is accepted. The payload will be
the selected path.

	
rejected

	An event fired when the dialog is rejected. It has no payload.

	
closed

	An event fired when the dialog is closed. It has no payload.

	
destroy_on_close

	Whether to destroy the dialog widget on close. The default is
True since dialogs are typically used in a transitory fashion.

	
proxy

	A reference to the ProxyFileDialog object.

	
open()

	Open the dialog in a non-blocking fashion.

This method will always return None. The state of the dialog
will be updated when the dialog is closed by the user.

	
exec_()

	Open the dialog in a blocking fashion.

	Returns:

	result – The path selected by the user, or an empty string if the
dialog is cancelled.

	Return type:

	unicode

 enaml.widgets.file_dialog_ex

enaml.widgets.file_dialog_ex

Classes

	FileDialogEx

	A toolkit dialog for getting file and directory names.

	
class enaml.widgets.file_dialog_ex.FileDialogEx(parent=None, **kwargs)

	Bases: ToolkitDialog

A toolkit dialog for getting file and directory names.

This dialog supercedes the FileDialog class. New code you should
use this dialog in lieu of the older version.

	
accept_mode

	The accept mode of the dialog.

	
file_mode

	The file mode of the dialog.

	
show_dirs_only

	Whether or not to only show directories. This is only valid when
the file_mode is set to ‘directory’.

	
current_path

	The currently selected path in the dialog.

	
selected_paths

	The paths selected by the user when the dialog is accepted.
This value is output only.

	
name_filters

	The name filters used to restrict the available files.

	
selected_name_filter

	The selected name filter from the list of name filters.

	
proxy

	A reference to the ProxyFileDialog object.

	
static get_existing_directory(parent=None, **kwargs)

	Get an existing directory on the filesystem.

	Parameters:

	
	parent (ToolkitObject or None) – The parent toolkit object for this dialog.

	**kwargs – Additional data to pass to the dialog constructor.

	Returns:

	result – The user selected directory path. This will be an empty
string if no directory was selected.

	Return type:

	unicode

	
static get_open_file_name(parent=None, **kwargs)

	Get the file name for an open file dialog.

	Parameters:

	
	parent (ToolkitObject or None) – The parent toolkit object for this dialog.

	**kwargs – Additional data to pass to the dialog constructor.

	Returns:

	result – The user selected file name. This will be an empty
string if no file name was selected.

	Return type:

	unicode

	
static get_open_file_names(parent=None, **kwargs)

	Get the file names for an open files dialog.

	Parameters:

	
	parent (ToolkitObject or None) – The parent toolkit object for this dialog.

	**kwargs – Additional data to pass to the dialog constructor.

	Returns:

	result – The user selected file names. This will be an empty
list if no file names were selected.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
static get_save_file_name(parent=None, **kwargs)

	Get the file name for a save file dialog.

	Parameters:

	
	parent (ToolkitObject or None) – The parent toolkit object for this dialog.

	**kwargs – Additional data to pass to the dialog constructor.

	Returns:

	result – The user selected file name. This will be an empty
string if no file name was selected.

	Return type:

	unicode

	
exec_native()

	Open the dialog using a native OS dialog if available.

	Returns:

	result – Whether or not the dialog was accepted.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

 enaml.widgets.flow_area

enaml.widgets.flow_area

Classes

	FlowArea

	A widget which lays out its children in flowing manner, wrapping around at the end of the available space.

	
class enaml.widgets.flow_area.FlowArea(parent=None, **kwargs)

	Bases: Frame

A widget which lays out its children in flowing manner, wrapping
around at the end of the available space.

	
direction

	The flow direction of the layout.

	
align

	The alignment of a line of items within the layout.

	
horizontal_spacing

	The amount of horizontal space to place between items.

	
vertical_spacing

	The amount of vertical space to place between items.

	
margins

	The margins to use around the outside of the flow area.

	
hug_width

	A FlowArea expands freely in width and height by default.

	
hug_height

	How strongly a widget hugs it’s height hint. This is equivalent
to the constraint:

(height == hint) | hug_height

	
proxy

	A reference to the ProxyFlowArea object.

	
flow_items()

	Get the flow item children defined on this area.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
border

	The border to apply to the frame. This may not be supported by
all toolkit backends.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

 enaml.widgets.flow_item

enaml.widgets.flow_item

Classes

	FlowItem

	A widget which can be used as an item in a FlowArea.

	
class enaml.widgets.flow_item.FlowItem(parent=None, **kwargs)

	Bases: Widget

A widget which can be used as an item in a FlowArea.

A FlowItem is a widget which can be used as a child of a FlowArea
widget. It can have at most a single child widget which is an
instance of Container.

	
preferred_size

	The preferred size of this flow item. This size will be used as
the size of the item in the layout, bounded to the computed min
and max size. A size of (-1, -1) indicates to use the widget’s
size hint as the preferred size.

	
align

	The alignment of this item in the direction orthogonal to the
layout flow.

	
stretch

	The stretch factor for this item in the flow direction, relative
to other items in the same line. The default is zero which means
that the item will not expand in the direction orthogonal to the
layout flow.

	
ortho_stretch

	The stretch factor for this item in the orthogonal direction
relative to other items in the layout. The default is zero
which means that the item will not expand in the direction
orthogonal to the layout flow.

	
proxy

	A reference to the ProxyFlowItem object.

	
flow_widget()

	Get the flow widget defined on this flow item.

The last Container defined on the item is the flow widget.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

 enaml.widgets.form

enaml.widgets.form

Classes

	Form

	A Container subclass that arranges its children in two columns.

	
class enaml.widgets.form.Form(parent=None, **kwargs)

	Bases: Container

A Container subclass that arranges its children in two columns.

The left column is typically Labels, but this is not a requirement.
The right are the actual widgets for data entry. The children should
be in alternating label/widget order. If there are an odd number
of children, the last child will span both columns.

The Form provides an extra constraint variable, ‘midline’, which
is used as the alignment anchor for the columns.

	
midline

	The ConstraintVariable giving the midline along which the labels
and widgets are aligned.

	
row_spacing

	The spacing to place between the form rows, in pixels.

	
column_spacing

	The spacing to place between the form columns, in pixels.

	
layout_constraints()

	Get the layout constraints for a Form.

A Form supplies default constraints which will arrange the
children in a two column layout. User defined ‘constraints’
will be added on top of the generated form constraints.

This method cannot be overridden from Enaml syntax.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
features

	Set the extra features to enable for this widget. This value must
be provided when the widget is instantiated. Runtime changes to
this value are ignored.

	
font

	The font used for the widget.

	
foreground

	The foreground color of the widget.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
maximum_size

	The maximum size for the widget. The default means that the
client should determine an intelligent maximum size.

	
minimum_size

	The minimum size for the widget. The default means that the
client should determine an intelligent minimum size.

	
name

	Export the ‘name’ attribute as a declarative member.

	
status_tip

	The status tip to show when the user hovers over the widget.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

	
tool_tip

	The tool tip to show when the user hovers over the widget.

 enaml.widgets.frame

enaml.widgets.frame

Classes

	Border

	A class for defining a border on a Frame.

	Frame

	A ConstraintsWidget that draws an optional border.

	
class enaml.widgets.frame.Border

	Bases: Atom

A class for defining a border on a Frame.

Border instances should be treated as read-only once created.

	
style

	The style of the border.

	
line_style

	The shadow style applied to the border.

	
line_width

	The thickness of the outer border line.

	
midline_width

	The thickness of the inner border line. This only has an effect
for the ‘sunken’ and ‘raised’ line styles.

	
class enaml.widgets.frame.Frame(parent=None, **kwargs)

	Bases: ConstraintsWidget

A ConstraintsWidget that draws an optional border.

This class serves as a base class for widgets such as Container and
ScrollArea. It should not normally be used directly by user code.

	
border

	The border to apply to the frame. This may not be supported by
all toolkit backends.

	
proxy

	A reference to the ProxyContainer object.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

 enaml.widgets.group_box

enaml.widgets.group_box

Classes

	GroupBox

	The GroupBox container, which introduces a group of widgets with a title and usually has a border.

	
class enaml.widgets.group_box.GroupBox(parent=None, **kwargs)

	Bases: Container

The GroupBox container, which introduces a group of widgets with
a title and usually has a border.

	
title

	The title displayed at the top of the box.

	
flat

	The flat parameter determines if the GroupBox is displayed with
just the title and a header line (True) or with a full border
(False, the default).

	
title_align

	The alignment of the title text.

	
proxy

	A reference to the ProxyGroupBox object.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
features

	Set the extra features to enable for this widget. This value must
be provided when the widget is instantiated. Runtime changes to
this value are ignored.

	
font

	The font used for the widget.

	
foreground

	The foreground color of the widget.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
maximum_size

	The maximum size for the widget. The default means that the
client should determine an intelligent maximum size.

	
minimum_size

	The minimum size for the widget. The default means that the
client should determine an intelligent minimum size.

	
name

	Export the ‘name’ attribute as a declarative member.

	
status_tip

	The status tip to show when the user hovers over the widget.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

	
tool_tip

	The tool tip to show when the user hovers over the widget.

 enaml.widgets.html

enaml.widgets.html

Classes

	Html

	An extremely simple widget for displaying HTML.

	
class enaml.widgets.html.Html(parent=None, **kwargs)

	Bases: Control

An extremely simple widget for displaying HTML.

	
source

	The Html source code to be rendered.

	
hug_width

	An html control expands freely in height and width by default.

	
hug_height

	How strongly a widget hugs it’s height hint. This is equivalent
to the constraint:

(height == hint) | hug_height

	
proxy

	A reference to the ProxyHtml object

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

 enaml.widgets.image_view

enaml.widgets.image_view

Classes

	ImageView

	A widget which can display an Image with optional scaling.

	
class enaml.widgets.image_view.ImageView(parent=None, **kwargs)

	Bases: Control

A widget which can display an Image with optional scaling.

	
image

	The image to display in the viewer.

	
scale_to_fit

	Whether or not to scale the image with the size of the component.

	
allow_upscaling

	Whether to allow upscaling of an image if scale_to_fit is True.

	
preserve_aspect_ratio

	Whether or not to preserve the aspect ratio if scaling the image.

	
hug_width

	An image view hugs its width weakly by default.

	
hug_height

	An image view hugs its height weakly by default.

	
proxy

	A reference to the ProxyImageView object.

	
layout_constraints()

	Add constraints to preserve the aspect ratio.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

 enaml.widgets.ipython_console

enaml.widgets.ipython_console

Classes

	IPythonConsole

	A widget which hosts an embedded IPython console.

	
class enaml.widgets.ipython_console.IPythonConsole(parent=None, **kwargs)

	Bases: Control

A widget which hosts an embedded IPython console.

	
initial_ns

	The initial namespace to apply to the console. Runtime changes
to this value will be ignored. Use ‘update_ns’ to add variables
to the console at runtime.

	
exit_requested

	An event fired when the user invokes a console exit command.

	
hug_width

	The ipython console expands freely by default.

	
hug_height

	How strongly a widget hugs it’s height hint. This is equivalent
to the constraint:

(height == hint) | hug_height

	
proxy

	A reference to the ProxyIPythonConsole object.

	
get_var(name, default=None)

	Get a variable from the console namespace.

	Parameters:

	
	name (basestring) – The name of the variable to retrieve.

	default (object [https://docs.python.org/3/library/functions.html#object], optional) – The value to return if the variable does not exist. The
default is None.

	Returns:

	result – The variable in the namespace, or the provided default.

	Return type:

	object [https://docs.python.org/3/library/functions.html#object]

	
update_ns(**kwargs)

	Update the variables in the console namespace.

	Parameters:

	**kwargs – The variables to update in the console namespace.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

 enaml.widgets.label

enaml.widgets.label

Classes

	Label

	A simple control for displaying read-only text.

	
class enaml.widgets.label.Label(parent=None, **kwargs)

	Bases: Control

A simple control for displaying read-only text.

	
text

	The unicode text for the label.

	
align

	The horizontal alignment of the text in the widget area.

	
vertical_align

	The vertical alignment of the text in the widget area.

	
link_activated

	An event emitted when the user clicks a link in the label.
The payload will be the link that was clicked.

	
hug_width

	Labels hug their width weakly by default.

	
proxy

	A reference to the ProxyLabel object.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

 enaml.widgets.main_window

enaml.widgets.main_window

Classes

	MainWindow

	A top level main window widget.

	
class enaml.widgets.main_window.MainWindow(parent=None, **kwargs)

	Bases: Window

A top level main window widget.

MainWindow widgets are top level widgets which provide additional
functionality beyond frame decoration. A MainWindow may optionally
contain a MenuBar, any number of ToolBars, a StatusBar, and any
number of DockPanes. Like Window, a MainWindow can have at most one
central Container widget, which will be expanded to fit into the
available space.

	
proxy

	A reference to the ProxyMainWindow object.

	
menu_bar()

	Get the menu bar defined as a child on the window.

The last MenuBar declared as a child is used as the official
menu bar of the window.

	
dock_panes()

	Get the dock panes defined as children on the window.

	
status_bar()

	Get the status bar defined as a child on the window.

The last StatusBar declared as a child is used as the official
status bar of the window.

	
tool_bars()

	Get the tool bars defined as children on the window.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

 enaml.widgets.mdi_area

enaml.widgets.mdi_area

Classes

	MdiArea

	A widget which acts as a virtual window manager for other top level widget.

	
class enaml.widgets.mdi_area.MdiArea(parent=None, **kwargs)

	Bases: ConstraintsWidget

A widget which acts as a virtual window manager for other
top level widget.

An MdiArea can be used to provide an area within an application
that can display other widgets in their own independent windows.
Children of an MdiArea should be defined as instances of MdiWindow.

	
hug_width

	An MdiArea expands freely in width and height by default.

	
hug_height

	How strongly a widget hugs it’s height hint. This is equivalent
to the constraint:

(height == hint) | hug_height

	
resist_width

	An MdiArea resists clipping only weakly by default.

	
resist_height

	How strongly a widget resists clipping its height hint. This is
equivalent to the constraint:

(height >= hint) | resist_height

	
proxy

	A reference to the ProxyMdiArea object.

	
mdi_windows()

	Get the mdi windows defined for the area.

	
tile_mdi_windows()

	Tile the mdi windows of this area.

Notes

For the time being the ordering is left to the backend. In the future,
a way to influence it may be added.

	
cascade_mdi_windows()

	Cascade the mdi windows of this area.

Notes

For the time being the ordering is left to the backend. In the future,
a way to influence it may be added.

	
child_added(child)

	Ensure that added children are visible if they are supposed to.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

 enaml.widgets.mdi_window

enaml.widgets.mdi_window

Classes

	MdiWindow

	A widget which can be used as a window in an MdiArea.

	
class enaml.widgets.mdi_window.MdiWindow(parent=None, **kwargs)

	Bases: Widget

A widget which can be used as a window in an MdiArea.

An MdiWindow is a widget which can be used as an independent window
in an MdiArea. It can have at most a single child widget which is
an instance of Widget.

	
title

	The titlebar text.

	
icon

	The title bar icon.

	
mdi_widget()

	Get the mdi widget defined for the window.

The last Widget child is the mdi widget.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

 enaml.widgets.menu

enaml.widgets.menu

Classes

	Menu

	A widget used as a menu in a MenuBar.

	
class enaml.widgets.menu.Menu(parent=None, **kwargs)

	Bases: ToolkitObject

A widget used as a menu in a MenuBar.

	
title

	The title to use for the menu.

	
enabled

	Whether or not the menu is enabled.

	
visible

	Whether or not the menu is visible.

	
context_menu

	Whether this menu should behave as a context menu for its parent.

	
proxy

	A reference to the ProxyMenu object.

	
items()

	Get the items defined on the Menu.

A menu item is one of Action, ActionGroup, or Menu.

	
popup()

	Popup the menu over the current mouse location.

	
close()

	Close the menu.

This API can be used by embedded widgets to close the menu
at the appropriate time.

 enaml.widgets.menu_bar

enaml.widgets.menu_bar

Classes

	MenuBar

	A widget used as a menu bar in a MainWindow.

	
class enaml.widgets.menu_bar.MenuBar(parent=None, **kwargs)

	Bases: ToolkitObject

A widget used as a menu bar in a MainWindow.

	
proxy

	A reference to the ProxyMenuBar object.

	
menus()

	Get the menus defined as children on the menu bar.

 enaml.widgets.mpl_canvas

enaml.widgets.mpl_canvas

Classes

	MPLCanvas

	A control which can be used to embded a matplotlib figure.

	
class enaml.widgets.mpl_canvas.MPLCanvas(parent=None, **kwargs)

	Bases: Control

A control which can be used to embded a matplotlib figure.

	
figure

	The matplotlib figure to display in the widget.

	
toolbar_visible

	Whether or not the matplotlib figure toolbar is visible.

	
hug_width

	Matplotlib figures expand freely in height and width by default.

	
hug_height

	How strongly a widget hugs it’s height hint. This is equivalent
to the constraint:

(height == hint) | hug_height

	
proxy

	A reference to the ProxyMPLCanvas object.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

 enaml.widgets.multiline_field

enaml.widgets.multiline_field

Classes

	MultilineField

	A simple multiline editable text widget.

	
class enaml.widgets.multiline_field.MultilineField(parent=None, **kwargs)

	Bases: Control

A simple multiline editable text widget.

	
text

	The unicode text to display in the field.

	
read_only

	Whether or not the field is read only.

	
auto_sync_text

	Whether the text in the control should be auto-synchronized with
the text attribute on the field. If this is True, the text will
be updated every time the user edits the control. In order to be
efficient, the toolkit will batch updates on a collapsing timer.

	
hug_width

	Multiline fields expand freely in width and height by default.

	
hug_height

	How strongly a widget hugs it’s height hint. This is equivalent
to the constraint:

(height == hint) | hug_height

	
proxy

	A reference to the ProxyMultilineField object.

	
sync_text()

	Synchronize the text with the text in the control.

	
field_text()

	Get the text stored in the field control.

Depending on the state of the field, this text may be different
than that stored in the ‘text’ attribute.

	Returns:

	result – The unicode text stored in the field.

	Return type:

	unicode

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

 enaml.widgets.notebook

enaml.widgets.notebook

Classes

	Notebook

	A component which displays its children as tabbed pages.

	
class enaml.widgets.notebook.Notebook(parent=None, **kwargs)

	Bases: ConstraintsWidget

A component which displays its children as tabbed pages.

	
tab_style

	The style of tabs to use in the notebook. Preferences style
tabs are appropriate for configuration dialogs and the like.
Document style tabs are appropriate for multi-page editing
in code editors and the like.

	
tab_position

	The position of tabs in the notebook.

	
tabs_closable

	Whether or not the tabs in the notebook should be closable.

	
tabs_movable

	Whether or not the tabs in the notebook should be movable.

	
selected_tab

	The object name for the selected tab in the notebook.

	
size_hint_mode

	The size hint mode for the stack. The default is ‘union’ and
means that the size hint of the notebook is the union of all
the tab size hints. ‘current’ means the size hint of the
notebook will be the size hint of the current tab.

	
hug_width

	A notebook expands freely in height and width by default.

	
hug_height

	How strongly a widget hugs it’s height hint. This is equivalent
to the constraint:

(height == hint) | hug_height

	
proxy

	A reference to the ProxyNotebook object.

	
pages()

	Get the Page children defined on the notebook.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

 enaml.widgets.object_combo

enaml.widgets.object_combo

Classes

	ObjectCombo

	A drop-down list from which one item can be selected at a time.

	
class enaml.widgets.object_combo.ObjectCombo(parent=None, **kwargs)

	Bases: Control

A drop-down list from which one item can be selected at a time.

Use a combo box to select a single item from a collection of items.

	
items

	The list of items to display in the combo box.

	
selected

	The selected item from the list of items. The default will be
the first item in the list of items, or None.

	
to_string

	The callable to use to convert the items into strings
for display. The default is the builtin ‘str’.

	
to_icon

	The callable to use to convert the items into icons for
display. The default is a lambda which returns None.

	
editable

	Whether the text in the combo box can be edited by the user.

	
hug_width

	A combo box hugs its width weakly by default.

	
proxy

	A reference to the ProxyObjectCombo object.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

 enaml.widgets.page

enaml.widgets.page

Classes

	Page

	A widget which can be used as a page in a Notebook control.

	
class enaml.widgets.page.Page(parent=None, **kwargs)

	Bases: Widget

A widget which can be used as a page in a Notebook control.

A Page is a widget which can be used as a child of a Notebook
control. It can have at most a single child widget which is an
instance of Container.

	
title

	The title to use for the page in the notebook.

	
icon

	The icon to use for the page tab.

	
closable

	Whether or not this individual page is closable. Note that the
‘tabs_closable’ flag on the parent Notebook must be set to True
for this to have any effect.

	
closed

	An event fired when the user closes the page by clicking on
the tab’s close button.

	
proxy

	A reference to the ProxyPage object.

	
page_widget()

	Get the page widget defined for the page.

The last child Container is the page widget.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

 enaml.widgets.popup_view

enaml.widgets.popup_view

Classes

	PopupView

	A widget which implements a nice popup view.

	
class enaml.widgets.popup_view.PopupView(parent=None, **kwargs)

	Bases: Widget

A widget which implements a nice popup view.

A PopupView is a single-use transient widget that is automatically
destroyed when it is closed. It is useful for showing contextual
popup dialogs or notification messages.

	
popup_views = []

	Static class-level storage for the view instances. A view will
automatically add and remove itself from this list as needed.
This list prevents the need for the user to manage a strong
reference to a transient popup.

	
window_type

	The type of the window to create. Each has different behavior. The
window type cannot be changed after the widget is created.

	‘popup’
	This window will close when the user presses escape or clicks
outside of the window. It will block all external interactions
until it is closed.

	‘tool_tip’
	This window will close when the user clicks inside the window.
It stays on top of all the other windows on the desktop. It is
useful for showing mouse cursor or desktop notifications.

	‘window’
	This window will close when the user clicks inside the window.
It stays on top of its parent, but not the other windows on
the desktop. It is useful for notifications inside a window.

	
anchor_mode

	The mode to use for anchoring. The ‘parent’ mode uses a point
on the parent or the desktop as the target anchor, the ‘cursor’
mode uses the current cursor position as the target anchor.

	
parent_anchor

	The relative position on the parent to use as the anchor. This
anchor will be aligned with the view anchor to position the
popup view. It is expressed as a percentage of the parent size.
The default anchors will position the popup just below the
center of the parent widget.

	
anchor

	The relative position on the view to use as the view anchor.
This anchor will be aligned with the parent anchor to position
the popup view. It is expressed as a percentage of the view
size. The default anchors will position the popup just below
the center of the parent widget.

	
offset

	The offset to apply between the two anchors, in pixels.

	
arrow_edge

	The edge of the popup view to use for rendering the arrow.

	
arrow_size

	The size of the arrow in pixels. If this value is > 0, the view
anchor is taken to be the point of the arrow. If the arrow edge
is ‘left’ or ‘right’, the anchor’s y-coordinate is used to set
the arrow position, and the x-coordinate is ignored. If the
arrow edge is ‘top’ or ‘bottom’, the anchor’s x-coordinate is
used to set the arrow position, and the y-coordinate is ignored.

	
timeout

	The timeout, in seconds, before automatically closing the popup.
A value less than or equal to zero means no timeout. This is
typically useful when displaying non-interactive notifications.

	
fade_in_duration

	The duration of the fade-in, in milliseconds. A value less than
or equal to zero means no fade.

	
fade_out_duration

	The duration of the fade-out, in milliseconds. A value less than
or equal to zero means no fade.

	
close_on_click

	Whether or not close the popup view on a mouse click. For ‘popup’
windows, this means clicking outside of the view. For ‘tool_tip’
and ‘window’ windows, this means clicking inside of the view.

	
translucent_background

	Whether or not the background of the popup view is translucent.
This must be True in order to use background colors with alpha
and for the fade in and out animation to have effect. This value
must be set before the popup view is shown. Changes to this value
after the popup is shown will have no effect.

	
closed

	An event emitted when the view is closed. After this event is
fired, the view will be destroyed and should not be used.

	
visible

	PopupViews are invisible by default.

	
proxy

	A reference to the ProxyPopupView object.

	
arrow_position

	This attribute is deprecated and will be removed in Enaml 1.0

	
central_widget()

	Get the central widget defined on the PopupView.

The last Container child of the window is the central widget.

	
show()

	Show the PopupView.

This is a reimplemented method which will intitialize the proxy
tree before showing the view.

	
close()

	Close the PopupView.

Closing the view, as opposed to hiding it or setting it’s
visibility to False, will cause the ‘closed’ event to be
emitted and the view to be destroyed.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

 enaml.widgets.progress_bar

enaml.widgets.progress_bar

Classes

	ProgressBar

	A control which displays a value as a ticking progress bar.

	
class enaml.widgets.progress_bar.ProgressBar(parent=None, **kwargs)

	Bases: Control

A control which displays a value as a ticking progress bar.

	
minimum

	The minimum progress value. If the minimum value is changed such
that it becomes greater than the current value or the maximum
value, then those values will be adjusted. The default is 0.

	
maximum

	The maximum progress value. If the maximum value is changed such
that it becomes smaller than the current value or the minimum
value, then those values will be adjusted. The default is 100.

	
value

	The position value of the Slider. The value will be clipped to
always fall between the minimum and maximum.

	
percentage

	A read only cached property which computes the integer percentage.

	
text_visible

	Whether or not to display progress percentage on the control.
This may not be supported by all toolkits and platforms.

	
hug_width

	How strongly a component hugs it’s content. ProgressBars expand
to fill the available horizontal space by default.

	
proxy

	A reference to the ProxyProgressBar object.

	
get_percentage()

	The getter function for the read only percentage property.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

 enaml.widgets.push_button

enaml.widgets.push_button

Classes

	PushButton

	A button control represented by a standard push button widget.

	
class enaml.widgets.push_button.PushButton(parent=None, **kwargs)

	Bases: AbstractButton

A button control represented by a standard push button widget.

	
default

	Whether this button is the default action button in a dialog.

	
proxy

	A reference to the ProxyPushButton object.

	
menu()

	Get the menu defined for the PushButton, if any.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

 enaml.widgets.radio_button

enaml.widgets.radio_button

Classes

	RadioButton

	An exclusive checkable button represented by a standard radio button widget.

	
class enaml.widgets.radio_button.RadioButton(parent=None, **kwargs)

	Bases: AbstractButton

An exclusive checkable button represented by a standard radio
button widget.

Use a radio button to toggle the value of a boolean field. For a
group of radio buttons with the same widget parent, only one radio
button may be selected at a time. This makes groups of radio buttons
useful for selecting amongst a discrete set of values. For multiple
groups of independent radio buttons, place each group of buttons
in their own Container.

The interface for AbstractButton fully defines the interface for
a RadioButton.

	
checkable

	Radio buttons are checkable by default.

	
proxy

	A reference to the ProxyRadioButton object.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

 enaml.widgets.raw_widget

enaml.widgets.raw_widget

Classes

	RawWidget

	A raw toolkit-specific control.

	
class enaml.widgets.raw_widget.RawWidget(parent=None, **kwargs)

	Bases: Control

A raw toolkit-specific control.

Use this widget when the toolkit backend for the application is
known ahead of time, and Enaml does provide an implementation of
the required widget. This can be used as a hook to inject custom
widgets into an Enaml widget hierarchy.

Notes

When using the Qt backend, note that PySide requires weakrefs for using
bound methods as slots. PyQt doesn’t, but executes unsafe code if not using
weakrefs. So you should add the following line to your class.
__slots__ = (‘__weakref__’,) or pass the keyword argument
enable_weakrefs=True to the metaclass:

class MyWidget(RawWidget, enable_weakref=True):
 pass

	
proxy

	A reference to the proxy Control object.

	
create_widget(parent)

	Create the toolkit widget for the control.

This method should create and initialize the widget.

	Parameters:

	parent (toolkit widget or None) – The parent toolkit widget for the control.

	Returns:

	result – The toolkit specific widget for the control.

	Return type:

	toolkit widget

	
get_widget()

	Retrieve the toolkit widget for the control.

	Returns:

	result – The toolkit widget that was previously created by the
call to ‘create_widget’ or None if the proxy is not
active or the widget has been destroyed.

	Return type:

	toolkit widget or None

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

 enaml.widgets.scroll_area

enaml.widgets.scroll_area

Classes

	ScrollArea

	A Frame which displays a single child in a scrollable area.

	
class enaml.widgets.scroll_area.ScrollArea(parent=None, **kwargs)

	Bases: Frame

A Frame which displays a single child in a scrollable area.

A ScrollArea has at most a single child Container widget.

	
horizontal_policy

	The horizontal scrollbar policy.

	
vertical_policy

	The vertical scrollbar policy.

	
widget_resizable

	Whether to resize the scroll widget when possible to avoid the
need for scrollbars or to make use of extra space.

	
hug_width

	A scroll area is free to expand in width and height by default.

	
hug_height

	How strongly a widget hugs it’s height hint. This is equivalent
to the constraint:

(height == hint) | hug_height

	
proxy

	A reference to the ProxyScrollArea object.

	
scroll_widget()

	Get the scroll widget child defined on the area.

The scroll widget is the last Container child.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
border

	The border to apply to the frame. This may not be supported by
all toolkit backends.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

 enaml.widgets.separator

enaml.widgets.separator

Classes

	Separator

	A widget which draws a horizontal or vertical separator line.

	
class enaml.widgets.separator.Separator(parent=None, **kwargs)

	Bases: Control

A widget which draws a horizontal or vertical separator line.

	
orientation

	The orientation of the separator line.

	
line_style

	The line style for the separator.

	
line_width

	The thickness of the outer separator line.

	
midline_width

	The thickness of the inner separator line. This only has an
effect for the ‘sunken’ and ‘raised’ line styles.

	
auto_hug

	Whether or not to automatically adjust the ‘hug_width’ and
‘hug_height’ values based on the value of ‘orientation’.

	
proxy

	A reference to the ProxySeparator object.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
hug_height

	How strongly a widget hugs it’s height hint. This is equivalent
to the constraint:

(height == hint) | hug_height

	
hug_width

	How strongly a widget hugs it’s width hint. This is equivalent
to the constraint:

(width == hint) | hug_width

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

 enaml.widgets.slider

enaml.widgets.slider

Classes

	Slider

	A simple slider widget that can be used to select from a range of integral values.

	
class enaml.widgets.slider.Slider(parent=None, **kwargs)

	Bases: Control

A simple slider widget that can be used to select from a range
of integral values.

A SliderTransform can be used to transform the integer range
of the slider into another data space. For more details, see
enaml.stdlib.slider_transform.

	
minimum

	The minimum slider value. If the minimum value is changed such
that it becomes greater than the current value or the maximum
value, then those values will be adjusted. The default is 0.

	
maximum

	The maximum slider value. If the maximum value is changed such
that it becomes smaller than the current value or the minimum
value, then those values will be adjusted. The default is 100.

	
value

	The position value of the Slider. The value will be clipped to
always fall between the minimum and maximum.

	
single_step

	Defines the number of steps that the slider will move when the
user presses the arrow keys. The default is 1. An upper limit
may be imposed according the limits of the client widget.

	
page_step

	Defines the number of steps that the slider will move when the
user presses the page_up/page_down keys. The Default is 10. An
upper limit may be imposed on this value according to the limits
of the client widget.

	
tick_position

	A TickPosition enum value indicating how to display the tick
marks. Note that the orientation takes precedence over the tick
mark position and an incompatible tick position will be adapted
according to the current orientation. The default tick position
is ‘bottom’.

	
tick_interval

	The interval to place between slider tick marks in units of
value (as opposed to pixels). The minimum value is 0, which
indicates that the choice is left up to the client.

	
orientation

	The orientation of the slider. The default orientation is
horizontal. When the orientation is flipped the tick positions
(if set) also adapt to reflect the changes (e.g. the LEFT
becomes TOP when the orientation becomes horizontal).

	
tracking

	If True, the value is updated while sliding. Otherwise, it is
only updated when the slider is released. Defaults to True.

	
auto_hug

	Whether or not to automatically adjust the ‘hug_width’ and
‘hug_height’ values based on the value of ‘orientation’.

	
proxy

	A reference to the ProxySlider object.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
hug_height

	How strongly a widget hugs it’s height hint. This is equivalent
to the constraint:

(height == hint) | hug_height

	
hug_width

	How strongly a widget hugs it’s width hint. This is equivalent
to the constraint:

(width == hint) | hug_width

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

 enaml.widgets.spin_box

enaml.widgets.spin_box

Classes

	SpinBox

	A spin box widget which manipulates integer values.

	
class enaml.widgets.spin_box.SpinBox(parent=None, **kwargs)

	Bases: Control

A spin box widget which manipulates integer values.

	
minimum

	The minimum value for the spin box. Defaults to 0.

	
maximum

	The maximum value for the spin box. Defaults to 100.

	
value

	The position value of the spin box. The value will be clipped to
always fall between the minimum and maximum.

	
prefix

	An optional prefix to include in the displayed text.

	
suffix

	An optional suffix to include in the displayed text.

	
special_value_text

	Optional text to display when the spin box is at its minimum.
This allows the developer to indicate to the user a special
significance to the minimum value e.g. “Auto”

	
single_step

	The step size for the spin box. Defaults to 1.

	
read_only

	Whether or not the spin box is read-only. If True, the user
will not be able to edit the values in the spin box, but they
will still be able to copy the text to the clipboard.

	
wrapping

	Whether or not the spin box will wrap around at its extremes.
Defaults to False.

	
hug_width

	A spin box expands freely in width by default.

	
proxy

	A reference to the ProxySpinBox object.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

 enaml.widgets.splitter

enaml.widgets.splitter

Classes

	Splitter

	A widget which displays its children in separate resizable compartments that are connected with a resizing bar.

	
class enaml.widgets.splitter.Splitter(parent=None, **kwargs)

	Bases: ConstraintsWidget

A widget which displays its children in separate resizable
compartments that are connected with a resizing bar.

A Splitter can have an arbitrary number of Container children.

	
orientation

	The orientation of the Splitter. ‘horizontal’ means the children
are laid out left to right, ‘vertical’ means top to bottom.

	
live_drag

	Whether the child widgets resize as a splitter is being dragged
(True), or if a simple indicator is drawn until the drag handle
is released (False). The default is True.

	
hug_width

	A splitter expands freely in height and width by default.

	
hug_height

	How strongly a widget hugs it’s height hint. This is equivalent
to the constraint:

(height == hint) | hug_height

	
proxy

	A reference to the ProxySplitter object.

	
split_items()

	Get the split item children defined on the splitter.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

 enaml.widgets.split_item

enaml.widgets.split_item

Classes

	SplitItem

	A widget which can be used as an item in a Splitter.

	
class enaml.widgets.split_item.SplitItem(parent=None, **kwargs)

	Bases: Widget

A widget which can be used as an item in a Splitter.

A SplitItem is a widget which can be used as a child of a Splitter
widget. It can have at most a single child widget which is an
instance of Container.

	
stretch

	The stretch factor for this item. The stretch factor determines
how much an item is resized relative to its neighbors when the
splitter space is allocated.

	
collapsible

	Whether or not the item can be collapsed to zero width by the
user. This holds regardless of the minimum size of the item.

	
preferred_size

	This is a deprecated attribute. It should no longer be used.

	
proxy

	A reference to the ProxySplitItem object.

	
split_widget()

	Get the split widget defined on the item.

The split widget is the last child Container.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

 enaml.widgets.stack

enaml.widgets.stack

Classes

	Transition

	An object representing an animated transition.

	Stack

	A component which displays its children as a stack of widgets, only one of which is visible at a time.

	
class enaml.widgets.stack.Transition

	Bases: Atom

An object representing an animated transition.

Once a transition is created, it should be considered read-only.

	
type

	The type of transition effect to use.

	
direction

	The direction of the transition effect. Some transition types
will ignore the direction if it doesn’t apply to the effect.

	
duration

	The duration of the transition, in milliseconds.

	
class enaml.widgets.stack.Stack(parent=None, **kwargs)

	Bases: ConstraintsWidget

A component which displays its children as a stack of widgets,
only one of which is visible at a time.

	
index

	The index of the visible widget in the stack. The widget itself
does not provide a means to changing this index. That control
must be supplied externally. If the given index falls outside of
the range of stack items, no widget will be visible.

	
transition

	The item transition to use when changing between stack items.

	
size_hint_mode

	The size hint mode for the stack. The default is ‘union’ and
means that the size hint of the stack is the union of all the
stack item size hints. ‘current’ means the size hint of the
stack will be the size hint of the current stack item.

	
hug_width

	A Stack expands freely in height and width by default

	
hug_height

	How strongly a widget hugs it’s height hint. This is equivalent
to the constraint:

(height == hint) | hug_height

	
proxy

	A reference to the ProxyStack widget.

	
stack_items()

	Get the stack items defined on the stack

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

 enaml.widgets.stack_item

enaml.widgets.stack_item

Classes

	StackItem

	A widget which can be used as an item in a Stack.

	
class enaml.widgets.stack_item.StackItem(parent=None, **kwargs)

	Bases: Widget

A widget which can be used as an item in a Stack.

A StackItem is a widget which can be used as a child of a Stack
widget. It can have at most a single child widget which is an
instance of Container.

	
proxy

	A reference to the ProxyStackItem object.

	
stack_widget()

	Get the stack widget defined for the item.

The stack widget is the last child Container.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

 enaml.widgets.status_bar

enaml.widgets.status_bar

Classes

	StatusBar

	A widget used as a status bar in a MainWindow.

	
class enaml.widgets.status_bar.StatusBar(parent=None, **kwargs)

	Bases: Widget

A widget used as a status bar in a MainWindow.

A status bar can be used to display temporary messages or display
persistent widgets by declaring StatusItem children.

	
size_grip_enabled

	Whether or not the size grip in the right corner is enabled.

	
proxy

	A reference to the ProxyStatusBar object.

	
status_items()

	Get the list of status items defined on the status bar.

	
show_message(message, timeout=0)

	Show a temporary message in the status bar.

	Parameters:

	
	message (unicode) – The message to show in the status bar.

	timeout (int [https://docs.python.org/3/library/functions.html#int], optional) – The number of milliseconds to show the message. The default
is 0, which will show the message until a new message is
shown or ‘clear_message()’ is called.

	
clear_message()

	Clear any temporary message displayed in the status bar.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

 enaml.widgets.status_item

enaml.widgets.status_item

Classes

	StatusItem

	An item which holds a widget to include in a status bar.

	
class enaml.widgets.status_item.StatusItem(parent=None, **kwargs)

	Bases: ToolkitObject

An item which holds a widget to include in a status bar.

	
mode

	The mode of a status item. A ‘normal’ item can be obscured by
temporary status messages; a ‘permanent’ item cannot.

	
stretch

	The stretch factor to apply to this item, relative to the other
items in the status bar.

	
proxy

	A reference to the ProxyStatusItem object.

	
status_widget()

	Get the status widget for the item.

The last Widget child is used as the status widget.

 enaml.widgets.timer

enaml.widgets.timer

Classes

	Timer

	An object which represents a toolkit independent timer.

	
class enaml.widgets.timer.Timer(parent=None, **kwargs)

	Bases: ToolkitObject

An object which represents a toolkit independent timer.

	
interval

	The interval of the timer, in milliseconds. The default is 0 and
indicates that the timer will fire as soon as the event queue is
emptied of all pending events.

	
single_shot

	Whether the timer fires only once, or repeatedly until stopped.

	
timeout

	An event fired when the timer times out.

	
proxy

	A reference to the ProxyTimer object.

	
start()

	Start or restart the timer.

If the timer is already started, it will be stopped and
restarted.

	
stop()

	Stop the timer.

If the timer is already stopped, this is a no-op.

	
is_active()

	Returns True if the timer is running, False otherwise.

 enaml.widgets.time_selector

enaml.widgets.time_selector

Classes

	TimeSelector

	A time widget that displays a Python datetime.time object using an appropriate toolkit specific control.

	
class enaml.widgets.time_selector.TimeSelector(parent=None, **kwargs)

	Bases: BoundedTime

A time widget that displays a Python datetime.time object using
an appropriate toolkit specific control.

	
time_format

	A python time format string to format the time. If None is
supplied (or is invalid) the system locale setting is used.
This may not be supported by all backends.

	
hug_width

	A time selector is free to expand in width by default.

	
proxy

	A reference to the ProxyDateSelector object.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

 enaml.widgets.toolkit_dialog

enaml.widgets.toolkit_dialog

Classes

	ToolkitDialog

	A base class for defining toolkit dialogs.

	
class enaml.widgets.toolkit_dialog.ToolkitDialog(parent=None, **kwargs)

	Bases: ToolkitObject

A base class for defining toolkit dialogs.

A toolkit dialog is a dialog where the content is defined by the
toolkit rather than the user. Customary examples would be a file
dialog or a color selection dialog, where the implementation can
often be a native operating system dialog.

	
title

	The title of the dialog window.

	
callback

	An optional callback which will be invoked when the dialog is
closed. This is a convenience to make it easier to handle a
dialog opened in non-blocking mode. The callback must accept
a single argument, which will be the dialog instance.

	
destroy_on_close

	Whether to destroy the dialog widget on close. The default is
True since dialogs are typically used in a transitory fashion.

	
accepted

	An event fired if the dialog is accepted. It has no payload.

	
rejected

	An event fired when the dialog is rejected. It has no payload.

	
finished

	An event fired when the dialog is finished. The payload is the
boolean result of the dialog.

	
result

	Whether or not the dialog was accepted by the user. It will be
updated when the dialog is closed. This value is output only.

	
proxy

	A reference to the ProxyToolkitDialog object.

	
show()

	Open the dialog as a non modal dialog.

	
open()

	Open the dialog as a window modal dialog.

	
exec_()

	Open the dialog as an application modal dialog.

	Returns:

	result – Whether or not the dialog was accepted.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
accept()

	Accept the current state and close the dialog.

	
reject()

	Reject the current state and close the dialog.

 enaml.widgets.toolkit_object

enaml.widgets.toolkit_object

Classes

	ToolkitObject

	The base class of all toolkit objects in Enaml.

	
class enaml.widgets.toolkit_object.ToolkitObject(parent=None, **kwargs)

	Bases: Declarative

The base class of all toolkit objects in Enaml.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
proxy

	A reference to the ProxyToolkitObject

	
property proxy_is_active

	A property which gets and sets the active proxy flag. This should
not be manipulated directly by user code. This flag will be set to
True by external code after the proxy widget hierarchy is setup.

	
initialize()

	A reimplemented initializer.

This initializer will invoke the application to create the
proxy if one has not already been provided.

	
destroy()

	A reimplemented destructor.

This destructor invokes the ‘destroy’ method on the proxy
toolkit object.

	
child_added(child)

	A reimplemented child added event handler.

This handler will invoke the superclass handler and then invoke
the ‘child_added()’ method on an active proxy.

	
child_removed(child)

	A reimplemented child removed event handler.

This handler will invoke the superclass handler and then invoke
the ‘child_removed()’ method on an active proxy. The method on
the active proxy will be called even if the child proxy has been
destroyed.

	
activate_proxy()

	Activate the proxy object tree.

This method should be called by a node to activate the proxy
tree by making two initialization passes over the tree, from
this node downward. This method is automatically at the proper
times and should not normally need to be invoked by user code.

	
activate_top_down()

	Initialize the proxy on the top-down activation pass.

By default, this method calls the ‘activate_top_down’ method on the
proxy object. It may be reimplemented by subclasses which wish
to perform toolkit-specific initialization.

	
activate_bottom_up()

	Initialize the proxy on the bottom-up activation pass.

By default, this method calls the ‘activate_bottom_up’ method on the
proxy object. It may be reimplemented by subclasses which wish
to perform toolkit-specific initialization.

 enaml.widgets.tool_bar

enaml.widgets.tool_bar

Classes

	ToolBar

	A widget which displays a row of tool buttons.

	
class enaml.widgets.tool_bar.ToolBar(parent=None, **kwargs)

	Bases: ConstraintsWidget

A widget which displays a row of tool buttons.

A ToolBar is typically used as a child of a MainWindow where it can
be dragged and docked in various locations in the same fashion as a
DockPane. However, a ToolBar can also be used as the child of a
Container and layed out with constraints, though in this case it will
lose its ability to be docked.

	
button_style

	The button style to apply to actions added to the tool bar.

	
movable

	Whether or not the tool bar is movable by the user. This value
only has meaning if the tool bar is the child of a MainWindow.

	
floatable

	Whether or not the tool bar can be floated as a separate window.
This value only has meaning if the tool bar is the child of a
MainWindow.

	
floating

	A boolean indicating whether or not the tool bar is floating.
This value only has meaning if the tool bar is the child of a
MainWindow.

	
dock_area

	The dock area in the MainWindow where the tool bar is docked.
This value only has meaning if the tool bar is the child of a
MainWindow.

	
allowed_dock_areas

	The areas in the MainWindow where the tool bar can be docked
by the user. This value only has meaning if the tool bar is the
child of a MainWindow.

	
orientation

	The orientation of the toolbar. This only has meaning when the
toolbar is not a child of a MainWindow and is used as part of
a constraints based layout.

	
auto_hug

	Whether or not to automatically adjust the ‘hug_width’ and
‘hug_height’ values based on the value of ‘orientation’.

	
proxy

	A reference to the ProxyToolBar object.

	
items()

	Get the items defined on the tool bar.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
hug_height

	How strongly a widget hugs it’s height hint. This is equivalent
to the constraint:

(height == hint) | hug_height

	
hug_width

	How strongly a widget hugs it’s width hint. This is equivalent
to the constraint:

(width == hint) | hug_width

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

 enaml.widgets.web_view

enaml.widgets.web_view

Classes

	WebView

	A widget which displays a web page.

	
class enaml.widgets.web_view.WebView(parent=None, **kwargs)

	Bases: Control

A widget which displays a web page.

Unlike the simpler Html widget, this widget supports the features
of a full web browser.

	
url

	The URL to load in the web view. This can be a path to a remote
resource or a path to a file on the local filesystem. This value
is mutually exclusive of html.

	
html

	The html to load into the web view. This value is mutually
exclusive of url.

	
base_url

	The base url for loading content in statically supplied ‘html’.

	
hug_width

	A web view expands freely in height and width by default.

	
hug_height

	How strongly a widget hugs it’s height hint. This is equivalent
to the constraint:

(height == hint) | hug_height

	
proxy

	A reference to the ProxyWebView object.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

	
background

	The background color of the widget.

	
destroyed

	An event fired when an object has been destroyed. It is triggered
once during the object lifetime, just before the object is
removed from the tree structure.

	
enabled

	Whether or not the widget is enabled.

	
initialized

	An event fired when an object is initialized. It is triggered
once during the object lifetime, at the end of the initialize
method.

	
name

	Export the ‘name’ attribute as a declarative member.

	
style_class

	The style class to which this item belongs. Multiple classes
can be separated with whitespace. An empty string indicates
the widget does not belong to any style class.

 enaml.widgets.widget

enaml.widgets.widget

Classes

	Widget

	The base class of visible widgets in Enaml.

	
class enaml.widgets.widget.Widget(parent=None, **kwargs)

	Bases: ToolkitObject, Stylable

The base class of visible widgets in Enaml.

	
enabled

	Whether or not the widget is enabled.

	
visible

	Whether or not the widget is visible.

	
background

	The background color of the widget.

	
foreground

	The foreground color of the widget.

	
font

	The font used for the widget.

	
minimum_size

	The minimum size for the widget. The default means that the
client should determine an intelligent minimum size.

	
maximum_size

	The maximum size for the widget. The default means that the
client should determine an intelligent maximum size.

	
tool_tip

	The tool tip to show when the user hovers over the widget.

	
status_tip

	The status tip to show when the user hovers over the widget.

	
features

	Set the extra features to enable for this widget. This value must
be provided when the widget is instantiated. Runtime changes to
this value are ignored.

	
proxy

	A reference to the ProxyWidget object.

	
restyle()

	Restyle the toolkit widget.

This method is invoked by the Stylable class when the style
dependencies have changed for the widget. This will trigger a
proxy restyle if necessary. This method should not typically be
called directly by user code.

	
show()

	Ensure the widget is shown.

Calling this method will also set the widget visibility to True.

	
hide()

	Ensure the widget is hidden.

Calling this method will also set the widget visibility to False.

	
set_focus()

	Set the keyboard input focus to this widget.

FOR ADVANCED USE CASES ONLY: DO NOT ABUSE THIS!

	
clear_focus()

	Clear the keyboard input focus from this widget.

FOR ADVANCED USE CASES ONLY: DO NOT ABUSE THIS!

	
has_focus()

	Test whether this widget has input focus.

FOR ADVANCED USE CASES ONLY: DO NOT ABUSE THIS!

	Returns:

	result – True if this widget has input focus, False otherwise.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
focus_next_child()

	Give focus to the next widget in the focus chain.

FOR ADVANCED USE CASES ONLY: DO NOT ABUSE THIS!

	
focus_previous_child()

	Give focus to the previous widget in the focus chain.

FOR ADVANCED USE CASES ONLY: DO NOT ABUSE THIS!

	
next_focus_child(current)

	Compute the next widget which should gain focus.

When the FocusTraversal feature of the widget is enabled, this
method will be invoked as a result of a Tab key press or from
a call to the ‘focus_next_child’ method on a decendant of the
owner widget. It should be reimplemented in order to provide
custom logic for computing the next focus widget.

** The FocusTraversal feature must be enabled for the widget in
order for this method to be called. **

	Parameters:

	current (Widget or None) – The current widget with input focus, or None if no widget
has focus or if the toolkit widget with focus does not
correspond to an Enaml widget.

	Returns:

	result – The next widget which should gain focus, or None to follow
the default toolkit behavior.

	Return type:

	Widget or None

	
previous_focus_child(current)

	Compute the previous widget which should gain focus.

When the FocusTraversal feature of the widget is enabled, this
method will be invoked as a result of a Shift+Tab key press or
from a call to the ‘focus_prev_child’ method on a decendant of
the owner widget. It should be reimplemented in order to provide
custom logic for computing the previous focus widget.

** The FocusTraversal feature must be enabled for the widget in
order for this method to be called. **

	Parameters:

	current (Widget or None) – The current widget with input focus, or None if no widget
has focus or if the toolkit widget with focus does not
correspond to an Enaml widget.

	Returns:

	result – The previous widget which should gain focus, or None to
follow the default toolkit behavior.

	Return type:

	Widget or None

	
focus_gained()

	A method invoked when the widget gains input focus.

** The FocusEvents feature must be enabled for the widget in
order for this method to be called. **

	
focus_lost()

	A method invoked when the widget loses input focus.

** The FocusEvents feature must be enabled for the widget in
order for this method to be called. **

	
drag_start()

	A method called at the start of a drag-drop operation.

This method is called when the user starts a drag operation
by dragging the widget with the left mouse button. It returns
the drag data for the drag operation.

** The DragEnabled feature must be enabled for the widget in
order for this method to be called. **

	Returns:

	result – An Enaml DragData object which holds the drag data. If
this is not provided, no drag operation will occur.

	Return type:

	DragData

	
drag_end(drag_data, result)

	A method called at the end of a drag-drop operation.

This method is called after the user has completed the drop
operation by releasing the left mouse button. It is passed
the original drag data object along with the resulting drop
action of the operation.

** The DragEnabled feature must be enabled for the widget in
order for this method to be called. **

	Parameters:

	
	data (DragData) – The drag data created by the drag_start method.

	result (DropAction) – The requested drop action when the drop completed.

	
drag_enter(event)

	A method invoked when a drag operation enters the widget.

The widget should inspect the mime data of the event and
accept the event if it can handle the drop action. The event
must be accepted in order to receive further drag-drop events.

** The DropEnabled feature must be enabled for the widget in
order for this method to be called. **

	Parameters:

	event (DropEvent) – The event representing the drag-drop operation.

	
drag_move(event)

	A method invoked when a drag operation moves in the widget.

This method will not normally be implemented, but it can be
useful for supporting advanced drag-drop interactions.

** The DropEnabled feature must be enabled for the widget in
order for this method to be called. **

	Parameters:

	event (DropEvent) – The event representing the drag-drop operation.

	
drag_leave()

	A method invoked when a drag operation leaves the widget.

** The DropEnabled feature must be enabled for the widget in
order for this method to be called. **

	
drop(event)

	A method invoked when the user drops the data on the widget.

The widget should either accept the proposed action, or set
the drop action to an appropriate action before accepting the
event, or set the drop action to DropAction.Ignore and then
ignore the event.

** The DropEnabled feature must be enabled for the widget in
order for this method to be called. **

	Parameters:

	event (DropEvent) – The event representing the drag-drop operation.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

 enaml.widgets.window

enaml.widgets.window

Classes

	Window

	A top-level Window component.

	
class enaml.widgets.window.Window(parent=None, **kwargs)

	Bases: Widget

A top-level Window component.

A Window component is represents of a top-level visible component
with a frame decoration. It may have at most one child widget which
is dubbed the ‘central widget’. The central widget is an instance
of Container and is expanded to fit the size of the window.

A Window does not support features like MenuBars or DockPanes, for
such functionality, use a MainWindow widget.

	
windows = {}

	A static set of windows being used by the application. A window
adds itself to this list when it is initialized, and removes
itself when it is destroyed. This allows toplevel windows with
no parent to persist without any other strong references.

	
title

	The titlebar text.

	
initial_position

	The initial position of the window frame. A value of (-1, -1)
indicates that the toolkit should choose the initial position.

	
initial_size

	The initial size of the window client area. A value of (-1, -1)
indicates that the toolkit should choose the initial size.

	
modality

	An enum which indicates the modality of the window. The default
value is ‘non_modal’.

	
destroy_on_close

	If this value is set to True, the window will be destroyed on
the completion of the closed event.

	
icon

	The title bar icon.

	
always_on_top

	Whether the window stays on top of other windows on the desktop.
Changes to this value after the window is shown will be ignored.

	
closing

	An event fired when the user request the window to be closed.
This will happen when the user clicks on the “X” button in the
title bar button, or when the ‘close’ method is called. The
payload will be a CloseEvent object which will allow code to
veto the close event and prevent the window from closing.

	
closed

	An event fired when the window is closed.

	
visible

	Windows are invisible by default.

	
proxy

	A reference to the ProxyWindow object.

	
initialize()

	An overridden initializer method.

This method adds the window to the static set of Windows.

	
destroy()

	An overridden destructor method.

This method removes the window from the static set of Windows.

	
central_widget()

	Get the central widget defined on the window.

The last Container child of the window is the central widget.

	
position()

	Get the position of the window frame.

	Returns:

	result – The current position of the window frame.

	Return type:

	Pos

	
set_position(pos)

	Set the position of the window frame.

	Parameters:

	pos (Pos) – The desired position of the window the window frame.

	
size()

	Get the size of the window client area.

	Returns:

	result – The current size of the window client area.

	Return type:

	Size

	
set_size(size)

	Set the size of the window client area.

	Parameters:

	size (Size) – The desired size of the window client area.

	
geometry()

	Get the geometry of the window client area.

	Returns:

	result – The current geometry of the window client area.

	Return type:

	Rect

	
set_geometry(rect)

	Set the geometry of the window client area.

	Parameters:

	rect (Rect) – The desired geometry of the window client area.

	
frame_geometry()

	Get the geometry of the window frame.

	Returns:

	result – The current geometry of the window frame.

	Return type:

	Rect

	
maximize()

	Maximize the window.

	
is_maximized()

	Get whether the window is maximized.

	
minimize()

	Minimize the window.

	
is_minimized()

	Get whether the window is minimized.

	
restore()

	Restore the window from a maximized or minimized state.

	
send_to_front()

	Send the window to the top of the Z-order.

This will only affect the Z-order of the window relative to the
Z-order of other windows in the same application.

	
send_to_back()

	Send the window to the bottom of the Z-order.

This will only affect the Z-order of the window relative to the
Z-order of other windows in the same application.

	
activate_window()

	Set this window to be the active application window.

This performs the same operation as clicking the mouse on the
title bar of the window, except that it will not effect the Z
order of the window.

On Windows, this will cause the taskbar icon to flash if the
window does not belong to the active application.

	
center_on_screen()

	Center the window on the screen.

	
center_on_widget(other)

	Center this window on another widget.

	Parameters:

	other (Widget) – The widget onto which to center this window.

	
close()

	Close the window.

This will cause the window to be hidden, the ‘closed’ event
to be fired, and the window subsequently destroyed.

	
show()

	Show the window to the screen.

This is a reimplemented parent class method which will init
and build the window hierarchy if needed.

	
activated

	An event fired when an object’s proxy is activated. It is
triggered once during the object lifetime, at the end of the
activate_proxy method.

 Command Reference

Command Reference

Enaml makes the following console scripts available

enaml-run

A shortcut which will run an enaml file using the default QtApplication. This
can be used to display most of the examples as follows (assuming you are at the
root of the repo):

$ enaml-run examples/widgets/window.enaml

By default the script will look for a component (enamldef class) named Main
to display. One can use the -c (–component) option to use a different
name.

enaml-compileall

An extension to the builtin compileall module which generates cache files for
both .py and .enaml files. It’s usage is the same as python’s compileall [https://docs.python.org/3.7/library/compileall.html].

 Developer notes

Developer notes

These notes are meant to help developers and contributors with regards to some
details of the implementation and coding style of the project.

Python codebase

The Python codebase currently targets Python 3.6+, strives to follow PEP 8 and
uses Numpy style docstring.

Python C++ bindings

The bindings are hand-written and relies on cppy (https://github.com/nucleic/cppy).
Enaml tries to use a reasonably modern C API and to support sub-interpreter,
this has a couple of consequences:

	static variables use is limited to cases that cannot lead to state leakage
between multiple sub-interpreters. Note that this is currently not heavily
tested and may require some improvements.

	all the non exported symbol are enclosed in anonymous namespaces

	enaml does not use static types and only dynamical types (note that the
type slots and related structures are stored in a static variable)

	modules use the multi-phases initialization mechanism as defined in
PEP 489 – Multi-phase extension module initialization

 Python Module Index

 Python Module Index

 e

 		 	

 		
 e	

 	[image: -]
 	
 enaml	

 	
 	
 enaml.applib	

 	
 	
 enaml.applib.live_editor_model	

 	
 	
 enaml.applib.live_editor_view	

 	
 	
 enaml.application	

 	
 	
 enaml.colors	

 	
 	
 enaml.core	

 	
 	
 enaml.core.conditional	

 	
 	
 enaml.core.declarative	

 	
 	
 enaml.core.include	

 	
 	
 enaml.core.looper	

 	
 	
 enaml.core.object	

 	
 	
 enaml.core.pattern	

 	
 	
 enaml.fonts	

 	
 	
 enaml.icon	

 	
 	
 enaml.image	

 	
 	
 enaml.layout	

 	
 	
 enaml.layout.dock_layout	

 	
 	
 enaml.layout.layout_helpers	

 	
 	
 enaml.nodevisitor	

 	
 	
 enaml.scintilla	

 	
 	
 enaml.scintilla.scintilla	

 	
 	
 enaml.stdlib	

 	
 	
 enaml.stdlib.dialog_buttons	

 	
 	
 enaml.stdlib.dock_area_styles	

 	
 	
 enaml.stdlib.fields	

 	
 	
 enaml.stdlib.mapped_view	

 	
 	
 enaml.stdlib.message_box	

 	
 	
 enaml.stdlib.slider_transform	

 	
 	
 enaml.stdlib.task_dialog	

 	
 	
 enaml.styling	

 	
 	
 enaml.validator	

 	
 	
 enaml.version	

 	
 	
 enaml.widgets	

 	
 	
 enaml.widgets.abstract_button	

 	
 	
 enaml.widgets.action	

 	
 	
 enaml.widgets.action_group	

 	
 	
 enaml.widgets.bounded_date	

 	
 	
 enaml.widgets.bounded_datetime	

 	
 	
 enaml.widgets.bounded_time	

 	
 	
 enaml.widgets.button_group	

 	
 	
 enaml.widgets.calendar	

 	
 	
 enaml.widgets.check_box	

 	
 	
 enaml.widgets.color_dialog	

 	
 	
 enaml.widgets.combo_box	

 	
 	
 enaml.widgets.constraints_widget	

 	
 	
 enaml.widgets.container	

 	
 	
 enaml.widgets.control	

 	
 	
 enaml.widgets.date_selector	

 	
 	
 enaml.widgets.datetime_selector	

 	
 	
 enaml.widgets.dialog	

 	
 	
 enaml.widgets.dock_area	

 	
 	
 enaml.widgets.dock_events	

 	
 	
 enaml.widgets.dock_item	

 	
 	
 enaml.widgets.dock_pane	

 	
 	
 enaml.widgets.dual_slider	

 	
 	
 enaml.widgets.field	

 	
 	
 enaml.widgets.file_dialog	

 	
 	
 enaml.widgets.file_dialog_ex	

 	
 	
 enaml.widgets.flow_area	

 	
 	
 enaml.widgets.flow_item	

 	
 	
 enaml.widgets.form	

 	
 	
 enaml.widgets.frame	

 	
 	
 enaml.widgets.group_box	

 	
 	
 enaml.widgets.html	

 	
 	
 enaml.widgets.image_view	

 	
 	
 enaml.widgets.ipython_console	

 	
 	
 enaml.widgets.label	

 	
 	
 enaml.widgets.main_window	

 	
 	
 enaml.widgets.mdi_area	

 	
 	
 enaml.widgets.mdi_window	

 	
 	
 enaml.widgets.menu	

 	
 	
 enaml.widgets.menu_bar	

 	
 	
 enaml.widgets.mpl_canvas	

 	
 	
 enaml.widgets.multiline_field	

 	
 	
 enaml.widgets.notebook	

 	
 	
 enaml.widgets.object_combo	

 	
 	
 enaml.widgets.page	

 	
 	
 enaml.widgets.popup_view	

 	
 	
 enaml.widgets.progress_bar	

 	
 	
 enaml.widgets.push_button	

 	
 	
 enaml.widgets.radio_button	

 	
 	
 enaml.widgets.raw_widget	

 	
 	
 enaml.widgets.scroll_area	

 	
 	
 enaml.widgets.separator	

 	
 	
 enaml.widgets.slider	

 	
 	
 enaml.widgets.spin_box	

 	
 	
 enaml.widgets.split_item	

 	
 	
 enaml.widgets.splitter	

 	
 	
 enaml.widgets.stack	

 	
 	
 enaml.widgets.stack_item	

 	
 	
 enaml.widgets.status_bar	

 	
 	
 enaml.widgets.status_item	

 	
 	
 enaml.widgets.time_selector	

 	
 	
 enaml.widgets.timer	

 	
 	
 enaml.widgets.tool_bar	

 	
 	
 enaml.widgets.toolkit_dialog	

 	
 	
 enaml.widgets.toolkit_object	

 	
 	
 enaml.widgets.web_view	

 	
 	
 enaml.widgets.widget	

 	
 	
 enaml.widgets.window	

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

_

 	
 	__call__() (enaml.nodevisitor.NodeVisitor method)

 	__init__() (enaml.application.ScheduledTask method)

 	(enaml.core.object.Object method)

 	(enaml.layout.dock_layout.AreaLayout method)

 	(enaml.layout.dock_layout.DockBarLayout method)

 	(enaml.layout.dock_layout.DockLayout method)

 	(enaml.layout.dock_layout.DockLayoutValidator method)

 	(enaml.layout.dock_layout.HSplitLayout method)

 	(enaml.layout.dock_layout.ItemLayout method)

 	(enaml.layout.dock_layout.SplitLayout method)

 	(enaml.layout.dock_layout.TabLayout method)

 	(enaml.layout.dock_layout.VSplitLayout method)

 	(enaml.stdlib.dialog_buttons.DialogButton method)

 	(enaml.widgets.abstract_button.AbstractButton method)

 	__intercepts_child_nodes__ (enaml.core.pattern.Pattern attribute)

 	__new__() (enaml.application.Application static method)

 	(enaml.colors.Color method)

 	(enaml.fonts.Font method)

 	(enaml.styling.StyleCache static method)

 	__reduce__() (enaml.colors.Color method)

 	__reduce_ex__() (enaml.applib.live_editor_view.EditorPanel method)

 	(enaml.applib.live_editor_view.TracebackPanel method)

 	(enaml.applib.live_editor_view.ViewPanel method)

 	(enaml.stdlib.dialog_buttons.DialogButtonBox method)

 	(enaml.stdlib.dock_area_styles.BasicStyle method)

 	(enaml.stdlib.fields.FloatField method)

 	(enaml.stdlib.fields.IntField method)

 	(enaml.stdlib.fields.RegexField method)

 	(enaml.stdlib.mapped_view.MappedView method)

 	(enaml.stdlib.message_box.MessageBox method)

 	(enaml.stdlib.task_dialog.TaskDialogBody method)

 	(enaml.stdlib.task_dialog.TaskDialogCommandArea method)

 	(enaml.stdlib.task_dialog.TaskDialogContentArea method)

 	(enaml.stdlib.task_dialog.TaskDialogDetailsArea method)

 	(enaml.stdlib.task_dialog.TaskDialogFootnoteArea method)

 	(enaml.stdlib.task_dialog.TaskDialogIconArea method)

 	(enaml.stdlib.task_dialog.TaskDialogInstructionArea method)

 	
 	__repr__() (enaml.colors.Color method)

 	(enaml.fonts.Font method)

 	__weakref__ (enaml.layout.dock_layout.DockLayoutWarning attribute)

 	(enaml.nodevisitor.NodeVisitor attribute)

 	(enaml.styling.StyleCache attribute)

A

 	
 	about() (in module enaml.stdlib.message_box)

 	AbstractButton (class in enaml.widgets.abstract_button)

 	accept() (enaml.widgets.dialog.Dialog method)

 	(enaml.widgets.toolkit_dialog.ToolkitDialog method)

 	accept_mode (enaml.widgets.file_dialog_ex.FileDialogEx attribute)

 	accepted (enaml.widgets.dialog.Dialog attribute)

 	(enaml.widgets.file_dialog.FileDialog attribute)

 	(enaml.widgets.toolkit_dialog.ToolkitDialog attribute)

 	Action (class in enaml.widgets.action)

 	ActionGroup (class in enaml.widgets.action_group)

 	actions() (enaml.widgets.action_group.ActionGroup method)

 	activate_bottom_up() (enaml.widgets.toolkit_object.ToolkitObject method)

 	activate_proxy() (enaml.widgets.toolkit_object.ToolkitObject method)

 	activate_top_down() (enaml.widgets.toolkit_object.ToolkitObject method)

 	activate_window() (enaml.widgets.window.Window method)

 	activated (enaml.applib.live_editor_view.EditorPanel attribute)

 	(enaml.applib.live_editor_view.ModelEditorPanel attribute)

 	(enaml.applib.live_editor_view.TracebackPanel attribute)

 	(enaml.applib.live_editor_view.ViewEditorPanel attribute)

 	(enaml.applib.live_editor_view.ViewPanel attribute)

 	(enaml.scintilla.scintilla.Scintilla attribute)

 	(enaml.stdlib.dialog_buttons.DialogButtonBox attribute)

 	(enaml.stdlib.fields.FloatField attribute)

 	(enaml.stdlib.fields.IntField attribute)

 	(enaml.stdlib.fields.RegexField attribute)

 	(enaml.stdlib.message_box.MessageBox attribute)

 	(enaml.stdlib.task_dialog.TaskDialogBody attribute)

 	(enaml.stdlib.task_dialog.TaskDialogCommandArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogContentArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogDetailsArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogFootnoteArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogIconArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogInstructionArea attribute)

 	(enaml.widgets.abstract_button.AbstractButton attribute)

 	(enaml.widgets.bounded_date.BoundedDate attribute)

 	(enaml.widgets.bounded_datetime.BoundedDatetime attribute)

 	(enaml.widgets.bounded_time.BoundedTime attribute)

 	(enaml.widgets.calendar.Calendar attribute)

 	(enaml.widgets.check_box.CheckBox attribute)

 	(enaml.widgets.combo_box.ComboBox attribute)

 	(enaml.widgets.constraints_widget.ConstraintsWidget attribute)

 	(enaml.widgets.container.Container attribute)

 	(enaml.widgets.control.Control attribute)

 	(enaml.widgets.date_selector.DateSelector attribute)

 	(enaml.widgets.datetime_selector.DatetimeSelector attribute)

 	(enaml.widgets.dialog.Dialog attribute)

 	(enaml.widgets.dock_area.DockArea attribute)

 	(enaml.widgets.dock_item.DockItem attribute)

 	(enaml.widgets.dock_pane.DockPane attribute)

 	(enaml.widgets.dual_slider.DualSlider attribute)

 	(enaml.widgets.field.Field attribute)

 	(enaml.widgets.flow_area.FlowArea attribute)

 	(enaml.widgets.flow_item.FlowItem attribute)

 	(enaml.widgets.form.Form attribute)

 	(enaml.widgets.frame.Frame attribute)

 	(enaml.widgets.group_box.GroupBox attribute)

 	(enaml.widgets.html.Html attribute)

 	(enaml.widgets.image_view.ImageView attribute)

 	(enaml.widgets.ipython_console.IPythonConsole attribute)

 	(enaml.widgets.label.Label attribute)

 	(enaml.widgets.main_window.MainWindow attribute)

 	(enaml.widgets.mdi_area.MdiArea attribute)

 	(enaml.widgets.mdi_window.MdiWindow attribute)

 	(enaml.widgets.mpl_canvas.MPLCanvas attribute)

 	(enaml.widgets.multiline_field.MultilineField attribute)

 	(enaml.widgets.notebook.Notebook attribute)

 	(enaml.widgets.object_combo.ObjectCombo attribute)

 	(enaml.widgets.page.Page attribute)

 	(enaml.widgets.popup_view.PopupView attribute)

 	(enaml.widgets.progress_bar.ProgressBar attribute)

 	(enaml.widgets.push_button.PushButton attribute)

 	(enaml.widgets.radio_button.RadioButton attribute)

 	(enaml.widgets.raw_widget.RawWidget attribute)

 	(enaml.widgets.scroll_area.ScrollArea attribute)

 	(enaml.widgets.separator.Separator attribute)

 	(enaml.widgets.slider.Slider attribute)

 	(enaml.widgets.spin_box.SpinBox attribute)

 	(enaml.widgets.split_item.SplitItem attribute)

 	(enaml.widgets.splitter.Splitter attribute)

 	(enaml.widgets.stack.Stack attribute)

 	(enaml.widgets.stack_item.StackItem attribute)

 	(enaml.widgets.status_bar.StatusBar attribute)

 	(enaml.widgets.time_selector.TimeSelector attribute)

 	(enaml.widgets.tool_bar.ToolBar attribute)

 	(enaml.widgets.toolkit_object.ToolkitObject attribute)

 	(enaml.widgets.web_view.WebView attribute)

 	(enaml.widgets.widget.Widget attribute)

 	(enaml.widgets.window.Window attribute)

 	
 	alert() (enaml.widgets.dock_item.DockItem method)

 	align (enaml.widgets.flow_area.FlowArea attribute)

 	(enaml.widgets.flow_item.FlowItem attribute)

 	(enaml.widgets.label.Label attribute)

 	align() (in module enaml.layout.layout_helpers)

 	allow_exponent (enaml.validator.FloatValidator attribute)

 	allow_upscaling (enaml.widgets.image_view.ImageView attribute)

 	allowed_dock_areas (enaml.widgets.dock_pane.DockPane attribute)

 	(enaml.widgets.tool_bar.ToolBar attribute)

 	alpha (enaml.colors.Color attribute)

 	always_on_top (enaml.widgets.window.Window attribute)

 	anchor (enaml.widgets.popup_view.PopupView attribute)

 	anchor_mode (enaml.widgets.popup_view.PopupView attribute)

 	Application (class in enaml.application)

 	apply_layout() (enaml.widgets.dock_area.DockArea method)

 	area (enaml.layout.dock_layout.FloatArea attribute)

 	AreaLayout (class in enaml.layout.dock_layout)

 	AreaStyle (class in enaml.stdlib.dock_area_styles)

 	argb (enaml.colors.Color attribute)

 	arrow_edge (enaml.widgets.popup_view.PopupView attribute)

 	arrow_position (enaml.widgets.popup_view.PopupView attribute)

 	arrow_size (enaml.widgets.popup_view.PopupView attribute)

 	aspect_ratio_mode (enaml.image.Image attribute)

 	auto_hug (enaml.widgets.dual_slider.DualSlider attribute)

 	(enaml.widgets.separator.Separator attribute)

 	(enaml.widgets.slider.Slider attribute)

 	(enaml.widgets.tool_bar.ToolBar attribute)

 	auto_sync_text (enaml.widgets.multiline_field.MultilineField attribute)

 	autocomplete (enaml.scintilla.scintilla.Scintilla attribute)

 	autocomplete() (enaml.applib.live_editor_model.LiveEditorModel method)

 	autocompletions (enaml.scintilla.scintilla.Scintilla attribute)

 	available_styles() (in module enaml.stdlib.dock_area_styles)

B

 	
 	background (enaml.applib.live_editor_view.EditorPanel attribute)

 	(enaml.applib.live_editor_view.ModelEditorPanel attribute)

 	(enaml.applib.live_editor_view.TracebackPanel attribute)

 	(enaml.applib.live_editor_view.ViewEditorPanel attribute)

 	(enaml.applib.live_editor_view.ViewPanel attribute)

 	(enaml.scintilla.scintilla.Scintilla attribute)

 	(enaml.stdlib.dialog_buttons.DialogButtonBox attribute)

 	(enaml.stdlib.fields.FloatField attribute)

 	(enaml.stdlib.fields.IntField attribute)

 	(enaml.stdlib.fields.RegexField attribute)

 	(enaml.stdlib.task_dialog.TaskDialogBody attribute)

 	(enaml.stdlib.task_dialog.TaskDialogCommandArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogContentArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogDetailsArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogFootnoteArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogIconArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogInstructionArea attribute)

 	(enaml.widgets.abstract_button.AbstractButton attribute)

 	(enaml.widgets.bounded_date.BoundedDate attribute)

 	(enaml.widgets.bounded_datetime.BoundedDatetime attribute)

 	(enaml.widgets.bounded_time.BoundedTime attribute)

 	(enaml.widgets.calendar.Calendar attribute)

 	(enaml.widgets.check_box.CheckBox attribute)

 	(enaml.widgets.combo_box.ComboBox attribute)

 	(enaml.widgets.constraints_widget.ConstraintsWidget attribute)

 	(enaml.widgets.container.Container attribute)

 	(enaml.widgets.control.Control attribute)

 	(enaml.widgets.date_selector.DateSelector attribute)

 	(enaml.widgets.datetime_selector.DatetimeSelector attribute)

 	(enaml.widgets.dock_area.DockArea attribute)

 	(enaml.widgets.dual_slider.DualSlider attribute)

 	(enaml.widgets.field.Field attribute)

 	(enaml.widgets.flow_area.FlowArea attribute)

 	(enaml.widgets.form.Form attribute)

 	(enaml.widgets.frame.Frame attribute)

 	(enaml.widgets.group_box.GroupBox attribute)

 	(enaml.widgets.html.Html attribute)

 	(enaml.widgets.image_view.ImageView attribute)

 	(enaml.widgets.ipython_console.IPythonConsole attribute)

 	(enaml.widgets.label.Label attribute)

 	(enaml.widgets.mdi_area.MdiArea attribute)

 	(enaml.widgets.mpl_canvas.MPLCanvas attribute)

 	(enaml.widgets.multiline_field.MultilineField attribute)

 	(enaml.widgets.notebook.Notebook attribute)

 	(enaml.widgets.object_combo.ObjectCombo attribute)

 	(enaml.widgets.progress_bar.ProgressBar attribute)

 	(enaml.widgets.push_button.PushButton attribute)

 	(enaml.widgets.radio_button.RadioButton attribute)

 	(enaml.widgets.raw_widget.RawWidget attribute)

 	(enaml.widgets.scroll_area.ScrollArea attribute)

 	(enaml.widgets.separator.Separator attribute)

 	(enaml.widgets.slider.Slider attribute)

 	(enaml.widgets.spin_box.SpinBox attribute)

 	(enaml.widgets.splitter.Splitter attribute)

 	(enaml.widgets.stack.Stack attribute)

 	(enaml.widgets.time_selector.TimeSelector attribute)

 	(enaml.widgets.tool_bar.ToolBar attribute)

 	(enaml.widgets.web_view.WebView attribute)

 	(enaml.widgets.widget.Widget attribute)

 	
 	base (enaml.validator.IntValidator attribute)

 	base_url (enaml.widgets.web_view.WebView attribute)

 	BasicStyle (class in enaml.stdlib.dock_area_styles)

 	blue (enaml.colors.Color attribute)

 	Border (class in enaml.widgets.frame)

 	border (enaml.widgets.flow_area.FlowArea attribute)

 	(enaml.widgets.frame.Frame attribute)

 	(enaml.widgets.scroll_area.ScrollArea attribute)

 	BoundedDate (class in enaml.widgets.bounded_date)

 	BoundedDatetime (class in enaml.widgets.bounded_datetime)

 	BoundedTime (class in enaml.widgets.bounded_time)

 	button_style (enaml.widgets.tool_bar.ToolBar attribute)

 	ButtonGroup (class in enaml.widgets.button_group)

 	buttons (enaml.stdlib.dialog_buttons.DialogButtonBox attribute)

 	(enaml.stdlib.message_box.MessageBox attribute)

C

 	
 	Calendar (class in enaml.widgets.calendar)

 	calendar_popup (enaml.widgets.date_selector.DateSelector attribute)

 	(enaml.widgets.datetime_selector.DatetimeSelector attribute)

 	callback (enaml.widgets.file_dialog.FileDialog attribute)

 	(enaml.widgets.toolkit_dialog.ToolkitDialog attribute)

 	caps (enaml.fonts.Font attribute)

 	cascade_mdi_windows() (enaml.widgets.mdi_area.MdiArea method)

 	center_on_screen() (enaml.widgets.window.Window method)

 	center_on_widget() (enaml.widgets.window.Window method)

 	central_widget() (enaml.widgets.popup_view.PopupView method)

 	(enaml.widgets.window.Window method)

 	checkable (enaml.widgets.abstract_button.AbstractButton attribute)

 	(enaml.widgets.action.Action attribute)

 	(enaml.widgets.check_box.CheckBox attribute)

 	(enaml.widgets.radio_button.RadioButton attribute)

 	CheckBox (class in enaml.widgets.check_box)

 	checked (enaml.widgets.abstract_button.AbstractButton attribute)

 	(enaml.widgets.action.Action attribute)

 	child_added() (enaml.core.declarative.Declarative method)

 	(enaml.core.object.Object method)

 	(enaml.styling.Stylable method)

 	(enaml.styling.Style method)

 	(enaml.styling.StyleSheet method)

 	(enaml.widgets.container.Container method)

 	(enaml.widgets.mdi_area.MdiArea method)

 	(enaml.widgets.toolkit_object.ToolkitObject method)

 	child_moved() (enaml.core.object.Object method)

 	(enaml.widgets.container.Container method)

 	child_node_intercept() (enaml.core.pattern.Pattern method)

 	child_removed() (enaml.core.object.Object method)

 	(enaml.styling.Stylable method)

 	(enaml.styling.Style method)

 	(enaml.styling.StyleSheet method)

 	(enaml.widgets.container.Container method)

 	(enaml.widgets.toolkit_object.ToolkitObject method)

 	children (enaml.core.object.Object property)

 	children() (enaml.layout.dock_layout.AreaLayout method)

 	(enaml.layout.dock_layout.DockBarLayout method)

 	(enaml.layout.dock_layout.DockLayout method)

 	(enaml.layout.dock_layout.LayoutNode method)

 	(enaml.layout.dock_layout.SplitLayout method)

 	(enaml.layout.dock_layout.TabLayout method)

 	clear_focus() (enaml.widgets.widget.Widget method)

 	
 	clear_message() (enaml.widgets.status_bar.StatusBar method)

 	clicked (enaml.stdlib.dialog_buttons.DialogButtonBox attribute)

 	(enaml.widgets.abstract_button.AbstractButton attribute)

 	closable (enaml.widgets.dock_item.DockItem attribute)

 	(enaml.widgets.dock_pane.DockPane attribute)

 	(enaml.widgets.page.Page attribute)

 	close() (enaml.widgets.menu.Menu method)

 	(enaml.widgets.popup_view.PopupView method)

 	(enaml.widgets.window.Window method)

 	close_on_click (enaml.widgets.popup_view.PopupView attribute)

 	Closed (enaml.widgets.dock_events.DockItemEvent.Type attribute)

 	closed (enaml.widgets.dock_item.DockItem attribute)

 	(enaml.widgets.dock_pane.DockPane attribute)

 	(enaml.widgets.file_dialog.FileDialog attribute)

 	(enaml.widgets.page.Page attribute)

 	(enaml.widgets.popup_view.PopupView attribute)

 	(enaml.widgets.window.Window attribute)

 	closing (enaml.widgets.dock_item.DockItem attribute)

 	(enaml.widgets.window.Window attribute)

 	collapsible (enaml.widgets.split_item.SplitItem attribute)

 	Color (class in enaml.colors)

 	ColorDialog (class in enaml.widgets.color_dialog)

 	column_spacing (enaml.widgets.form.Form attribute)

 	ComboBox (class in enaml.widgets.combo_box)

 	compiled_model (enaml.applib.live_editor_model.LiveEditorModel attribute)

 	compiled_view (enaml.applib.live_editor_model.LiveEditorModel attribute)

 	condition (enaml.core.conditional.Conditional attribute)

 	Conditional (class in enaml.core.conditional)

 	constraints (enaml.widgets.constraints_widget.ConstraintsWidget attribute)

 	ConstraintsWidget (class in enaml.widgets.constraints_widget)

 	Container (class in enaml.widgets.container)

 	ContainerStyle (class in enaml.stdlib.dock_area_styles)

 	content (enaml.stdlib.message_box.MessageBox attribute)

 	context_menu (enaml.widgets.menu.Menu attribute)

 	Control (class in enaml.widgets.control)

 	create_mime_data() (enaml.application.Application method)

 	create_proxy() (enaml.application.Application method)

 	create_widget() (enaml.widgets.raw_widget.RawWidget method)

 	critical() (in module enaml.stdlib.message_box)

 	current_color (enaml.widgets.color_dialog.ColorDialog attribute)

 	current_path (enaml.widgets.file_dialog_ex.FileDialogEx attribute)

 	cursor_position (enaml.scintilla.scintilla.Scintilla attribute)

 	custom_color() (enaml.widgets.color_dialog.ColorDialog static method)

 	custom_count() (enaml.widgets.color_dialog.ColorDialog static method)

D

 	
 	d_() (in module enaml.core.declarative)

 	data (enaml.image.Image attribute)

 	date (enaml.widgets.bounded_date.BoundedDate attribute)

 	date_format (enaml.widgets.date_selector.DateSelector attribute)

 	DateSelector (class in enaml.widgets.date_selector)

 	datetime (enaml.widgets.bounded_datetime.BoundedDatetime attribute)

 	datetime_format (enaml.widgets.datetime_selector.DatetimeSelector attribute)

 	DatetimeSelector (class in enaml.widgets.datetime_selector)

 	Declarative (class in enaml.core.declarative)

 	default (enaml.widgets.push_button.PushButton attribute)

 	default_visit() (enaml.nodevisitor.NodeVisitor method)

 	deferred_call() (enaml.application.Application method)

 	(in module enaml.application)

 	destroy() (enaml.application.Application method)

 	(enaml.core.conditional.Conditional method)

 	(enaml.core.declarative.Declarative method)

 	(enaml.core.include.Include method)

 	(enaml.core.looper.Looper method)

 	(enaml.core.object.Object method)

 	(enaml.core.pattern.Pattern method)

 	(enaml.styling.Setter method)

 	(enaml.styling.Stylable method)

 	(enaml.styling.Style method)

 	(enaml.styling.StyleSheet method)

 	(enaml.widgets.toolkit_object.ToolkitObject method)

 	(enaml.widgets.window.Window method)

 	destroy_old (enaml.core.include.Include attribute)

 	destroy_on_close (enaml.widgets.file_dialog.FileDialog attribute)

 	(enaml.widgets.toolkit_dialog.ToolkitDialog attribute)

 	(enaml.widgets.window.Window attribute)

 	destroyed (enaml.applib.live_editor_view.EditorPanel attribute)

 	(enaml.applib.live_editor_view.ModelEditorPanel attribute)

 	(enaml.applib.live_editor_view.TracebackPanel attribute)

 	(enaml.applib.live_editor_view.ViewEditorPanel attribute)

 	(enaml.applib.live_editor_view.ViewPanel attribute)

 	(enaml.core.object.Object attribute)

 	(enaml.scintilla.scintilla.Scintilla attribute)

 	(enaml.stdlib.dialog_buttons.DialogButtonBox attribute)

 	(enaml.stdlib.fields.FloatField attribute)

 	(enaml.stdlib.fields.IntField attribute)

 	(enaml.stdlib.fields.RegexField attribute)

 	(enaml.stdlib.task_dialog.TaskDialogBody attribute)

 	(enaml.stdlib.task_dialog.TaskDialogCommandArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogContentArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogDetailsArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogFootnoteArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogIconArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogInstructionArea attribute)

 	(enaml.widgets.abstract_button.AbstractButton attribute)

 	(enaml.widgets.bounded_date.BoundedDate attribute)

 	(enaml.widgets.bounded_datetime.BoundedDatetime attribute)

 	(enaml.widgets.bounded_time.BoundedTime attribute)

 	(enaml.widgets.calendar.Calendar attribute)

 	(enaml.widgets.check_box.CheckBox attribute)

 	(enaml.widgets.combo_box.ComboBox attribute)

 	(enaml.widgets.constraints_widget.ConstraintsWidget attribute)

 	(enaml.widgets.container.Container attribute)

 	(enaml.widgets.control.Control attribute)

 	(enaml.widgets.date_selector.DateSelector attribute)

 	(enaml.widgets.datetime_selector.DatetimeSelector attribute)

 	(enaml.widgets.dock_area.DockArea attribute)

 	(enaml.widgets.dual_slider.DualSlider attribute)

 	(enaml.widgets.field.Field attribute)

 	(enaml.widgets.flow_area.FlowArea attribute)

 	(enaml.widgets.form.Form attribute)

 	(enaml.widgets.frame.Frame attribute)

 	(enaml.widgets.group_box.GroupBox attribute)

 	(enaml.widgets.html.Html attribute)

 	(enaml.widgets.image_view.ImageView attribute)

 	(enaml.widgets.ipython_console.IPythonConsole attribute)

 	(enaml.widgets.label.Label attribute)

 	(enaml.widgets.mdi_area.MdiArea attribute)

 	(enaml.widgets.mpl_canvas.MPLCanvas attribute)

 	(enaml.widgets.multiline_field.MultilineField attribute)

 	(enaml.widgets.notebook.Notebook attribute)

 	(enaml.widgets.object_combo.ObjectCombo attribute)

 	(enaml.widgets.progress_bar.ProgressBar attribute)

 	(enaml.widgets.push_button.PushButton attribute)

 	(enaml.widgets.radio_button.RadioButton attribute)

 	(enaml.widgets.raw_widget.RawWidget attribute)

 	(enaml.widgets.scroll_area.ScrollArea attribute)

 	(enaml.widgets.separator.Separator attribute)

 	(enaml.widgets.slider.Slider attribute)

 	(enaml.widgets.spin_box.SpinBox attribute)

 	(enaml.widgets.splitter.Splitter attribute)

 	(enaml.widgets.stack.Stack attribute)

 	(enaml.widgets.time_selector.TimeSelector attribute)

 	(enaml.widgets.tool_bar.ToolBar attribute)

 	(enaml.widgets.web_view.WebView attribute)

 	
 	details (enaml.stdlib.message_box.MessageBox attribute)

 	Dialog (class in enaml.widgets.dialog)

 	DialogButton (class in enaml.stdlib.dialog_buttons)

 	DialogButtonBox (class in enaml.stdlib.dialog_buttons)

 	direction (enaml.widgets.flow_area.FlowArea attribute)

 	(enaml.widgets.stack.Transition attribute)

 	dock_area (enaml.widgets.dock_pane.DockPane attribute)

 	(enaml.widgets.tool_bar.ToolBar attribute)

 	dock_bars (enaml.layout.dock_layout.AreaLayout attribute)

 	dock_event (enaml.widgets.dock_area.DockArea attribute)

 	dock_events_enabled (enaml.widgets.dock_area.DockArea attribute)

 	dock_items() (enaml.widgets.dock_area.DockArea method)

 	dock_panes() (enaml.widgets.main_window.MainWindow method)

 	dock_widget() (enaml.widgets.dock_item.DockItem method)

 	(enaml.widgets.dock_pane.DockPane method)

 	DockArea (class in enaml.widgets.dock_area)

 	DockBarButtonStyle (class in enaml.stdlib.dock_area_styles)

 	DockBarLayout (class in enaml.layout.dock_layout)

 	Docked (enaml.widgets.dock_events.DockItemEvent.Type attribute)

 	DockEvent (class in enaml.widgets.dock_events)

 	DockItem (class in enaml.widgets.dock_item)

 	DockItemEvent (class in enaml.widgets.dock_events)

 	DockItemEvent.Type (class in enaml.widgets.dock_events)

 	DockLayout (class in enaml.layout.dock_layout)

 	DockLayoutOp (class in enaml.layout.dock_layout)

 	DockLayoutValidator (class in enaml.layout.dock_layout)

 	DockLayoutWarning (class in enaml.layout.dock_layout)

 	DockPane (class in enaml.widgets.dock_pane)

 	document (enaml.scintilla.scintilla.Scintilla attribute)

 	done() (enaml.widgets.dialog.Dialog method)

 	drag_end() (enaml.widgets.widget.Widget method)

 	drag_enter() (enaml.widgets.widget.Widget method)

 	drag_leave() (enaml.widgets.widget.Widget method)

 	drag_move() (enaml.widgets.widget.Widget method)

 	drag_start() (enaml.widgets.widget.Widget method)

 	drop() (enaml.widgets.widget.Widget method)

 	DualSlider (class in enaml.widgets.dual_slider)

 	duration (enaml.widgets.stack.Transition attribute)

E

 	
 	echo_mode (enaml.widgets.field.Field attribute)

 	editable (enaml.widgets.combo_box.ComboBox attribute)

 	(enaml.widgets.object_combo.ObjectCombo attribute)

 	EditorPanel (class in enaml.applib.live_editor_view)

 	element (enaml.styling.Style attribute)

 	enabled (enaml.applib.live_editor_view.EditorPanel attribute)

 	(enaml.applib.live_editor_view.ModelEditorPanel attribute)

 	(enaml.applib.live_editor_view.TracebackPanel attribute)

 	(enaml.applib.live_editor_view.ViewEditorPanel attribute)

 	(enaml.applib.live_editor_view.ViewPanel attribute)

 	(enaml.scintilla.scintilla.Scintilla attribute)

 	(enaml.stdlib.dialog_buttons.DialogButtonBox attribute)

 	(enaml.stdlib.fields.FloatField attribute)

 	(enaml.stdlib.fields.IntField attribute)

 	(enaml.stdlib.fields.RegexField attribute)

 	(enaml.stdlib.task_dialog.TaskDialogBody attribute)

 	(enaml.stdlib.task_dialog.TaskDialogCommandArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogContentArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogDetailsArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogFootnoteArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogIconArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogInstructionArea attribute)

 	(enaml.widgets.abstract_button.AbstractButton attribute)

 	(enaml.widgets.action.Action attribute)

 	(enaml.widgets.action_group.ActionGroup attribute)

 	(enaml.widgets.bounded_date.BoundedDate attribute)

 	(enaml.widgets.bounded_datetime.BoundedDatetime attribute)

 	(enaml.widgets.bounded_time.BoundedTime attribute)

 	(enaml.widgets.calendar.Calendar attribute)

 	(enaml.widgets.check_box.CheckBox attribute)

 	(enaml.widgets.combo_box.ComboBox attribute)

 	(enaml.widgets.constraints_widget.ConstraintsWidget attribute)

 	(enaml.widgets.container.Container attribute)

 	(enaml.widgets.control.Control attribute)

 	(enaml.widgets.date_selector.DateSelector attribute)

 	(enaml.widgets.datetime_selector.DatetimeSelector attribute)

 	(enaml.widgets.dock_area.DockArea attribute)

 	(enaml.widgets.dual_slider.DualSlider attribute)

 	(enaml.widgets.field.Field attribute)

 	(enaml.widgets.flow_area.FlowArea attribute)

 	(enaml.widgets.form.Form attribute)

 	(enaml.widgets.frame.Frame attribute)

 	(enaml.widgets.group_box.GroupBox attribute)

 	(enaml.widgets.html.Html attribute)

 	(enaml.widgets.image_view.ImageView attribute)

 	(enaml.widgets.ipython_console.IPythonConsole attribute)

 	(enaml.widgets.label.Label attribute)

 	(enaml.widgets.mdi_area.MdiArea attribute)

 	(enaml.widgets.menu.Menu attribute)

 	(enaml.widgets.mpl_canvas.MPLCanvas attribute)

 	(enaml.widgets.multiline_field.MultilineField attribute)

 	(enaml.widgets.notebook.Notebook attribute)

 	(enaml.widgets.object_combo.ObjectCombo attribute)

 	(enaml.widgets.progress_bar.ProgressBar attribute)

 	(enaml.widgets.push_button.PushButton attribute)

 	(enaml.widgets.radio_button.RadioButton attribute)

 	(enaml.widgets.raw_widget.RawWidget attribute)

 	(enaml.widgets.scroll_area.ScrollArea attribute)

 	(enaml.widgets.separator.Separator attribute)

 	(enaml.widgets.slider.Slider attribute)

 	(enaml.widgets.spin_box.SpinBox attribute)

 	(enaml.widgets.splitter.Splitter attribute)

 	(enaml.widgets.stack.Stack attribute)

 	(enaml.widgets.time_selector.TimeSelector attribute)

 	(enaml.widgets.tool_bar.ToolBar attribute)

 	(enaml.widgets.web_view.WebView attribute)

 	(enaml.widgets.widget.Widget attribute)

 	
 enaml

 	module

 	
 enaml.applib

 	module

 	
 enaml.applib.live_editor_model

 	module

 	
 enaml.applib.live_editor_view

 	module

 	
 enaml.application

 	module

 	
 enaml.colors

 	module

 	
 enaml.core

 	module

 	
 enaml.core.conditional

 	module

 	
 enaml.core.declarative

 	module

 	
 enaml.core.include

 	module

 	
 enaml.core.looper

 	module

 	
 enaml.core.object

 	module

 	
 enaml.core.pattern

 	module

 	
 enaml.fonts

 	module

 	
 enaml.icon

 	module

 	
 enaml.image

 	module

 	
 enaml.layout

 	module

 	
 enaml.layout.dock_layout

 	module

 	
 enaml.layout.layout_helpers

 	module

 	
 enaml.nodevisitor

 	module

 	
 enaml.scintilla

 	module

 	
 enaml.scintilla.scintilla

 	module

 	
 enaml.stdlib

 	module

 	
 enaml.stdlib.dialog_buttons

 	module

 	
 enaml.stdlib.dock_area_styles

 	module

 	
 enaml.stdlib.fields

 	module

 	
 enaml.stdlib.mapped_view

 	module

 	
 enaml.stdlib.message_box

 	module

 	
 enaml.stdlib.slider_transform

 	module

 	
 enaml.stdlib.task_dialog

 	module

 	
 enaml.styling

 	module

 	
 enaml.validator

 	module

 	
 enaml.version

 	module

 	
 enaml.widgets

 	module

 	
 enaml.widgets.abstract_button

 	module

 	
 enaml.widgets.action

 	module

 	
 enaml.widgets.action_group

 	module

 	
 	
 enaml.widgets.bounded_date

 	module

 	
 enaml.widgets.bounded_datetime

 	module

 	
 enaml.widgets.bounded_time

 	module

 	
 enaml.widgets.button_group

 	module

 	
 enaml.widgets.calendar

 	module

 	
 enaml.widgets.check_box

 	module

 	
 enaml.widgets.color_dialog

 	module

 	
 enaml.widgets.combo_box

 	module

 	
 enaml.widgets.constraints_widget

 	module

 	
 enaml.widgets.container

 	module

 	
 enaml.widgets.control

 	module

 	
 enaml.widgets.date_selector

 	module

 	
 enaml.widgets.datetime_selector

 	module

 	
 enaml.widgets.dialog

 	module

 	
 enaml.widgets.dock_area

 	module

 	
 enaml.widgets.dock_events

 	module

 	
 enaml.widgets.dock_item

 	module

 	
 enaml.widgets.dock_pane

 	module

 	
 enaml.widgets.dual_slider

 	module

 	
 enaml.widgets.field

 	module

 	
 enaml.widgets.file_dialog

 	module

 	
 enaml.widgets.file_dialog_ex

 	module

 	
 enaml.widgets.flow_area

 	module

 	
 enaml.widgets.flow_item

 	module

 	
 enaml.widgets.form

 	module

 	
 enaml.widgets.frame

 	module

 	
 enaml.widgets.group_box

 	module

 	
 enaml.widgets.html

 	module

 	
 enaml.widgets.image_view

 	module

 	
 enaml.widgets.ipython_console

 	module

 	
 enaml.widgets.label

 	module

 	
 enaml.widgets.main_window

 	module

 	
 enaml.widgets.mdi_area

 	module

 	
 enaml.widgets.mdi_window

 	module

 	
 enaml.widgets.menu

 	module

 	
 enaml.widgets.menu_bar

 	module

 	
 enaml.widgets.mpl_canvas

 	module

 	
 enaml.widgets.multiline_field

 	module

 	
 enaml.widgets.notebook

 	module

 	
 enaml.widgets.object_combo

 	module

 	
 enaml.widgets.page

 	module

 	
 enaml.widgets.popup_view

 	module

 	
 enaml.widgets.progress_bar

 	module

 	
 enaml.widgets.push_button

 	module

 	
 enaml.widgets.radio_button

 	module

 	
 enaml.widgets.raw_widget

 	module

 	
 enaml.widgets.scroll_area

 	module

 	
 enaml.widgets.separator

 	module

 	
 enaml.widgets.slider

 	module

 	
 enaml.widgets.spin_box

 	module

 	
 enaml.widgets.split_item

 	module

 	
 enaml.widgets.splitter

 	module

 	
 enaml.widgets.stack

 	module

 	
 enaml.widgets.stack_item

 	module

 	
 enaml.widgets.status_bar

 	module

 	
 enaml.widgets.status_item

 	module

 	
 enaml.widgets.time_selector

 	module

 	
 enaml.widgets.timer

 	module

 	
 enaml.widgets.tool_bar

 	module

 	
 enaml.widgets.toolkit_dialog

 	module

 	
 enaml.widgets.toolkit_object

 	module

 	
 enaml.widgets.web_view

 	module

 	
 enaml.widgets.widget

 	module

 	
 enaml.widgets.window

 	module

 	Events (enaml.stdlib.dialog_buttons.DialogButtonBox attribute)

 	exclusive (enaml.widgets.action_group.ActionGroup attribute)

 	(enaml.widgets.button_group.ButtonGroup attribute)

 	exec_() (enaml.widgets.dialog.Dialog method)

 	(enaml.widgets.file_dialog.FileDialog method)

 	(enaml.widgets.toolkit_dialog.ToolkitDialog method)

 	exec_native() (enaml.widgets.file_dialog_ex.FileDialogEx method)

 	exit_requested (enaml.widgets.ipython_console.IPythonConsole attribute)

 	expand_constraints() (in module enaml.layout.layout_helpers)

 	Extended (enaml.widgets.dock_events.DockItemEvent.Type attribute)

 	ExtendItem (class in enaml.layout.dock_layout)

F

 	
 	factories (enaml.application.ProxyResolver attribute)

 	factory() (in module enaml.layout.layout_helpers)

 	fade_in_duration (enaml.widgets.popup_view.PopupView attribute)

 	fade_out_duration (enaml.widgets.popup_view.PopupView attribute)

 	family (enaml.fonts.Font attribute)

 	features (enaml.applib.live_editor_view.EditorPanel attribute)

 	(enaml.applib.live_editor_view.ModelEditorPanel attribute)

 	(enaml.applib.live_editor_view.TracebackPanel attribute)

 	(enaml.applib.live_editor_view.ViewEditorPanel attribute)

 	(enaml.applib.live_editor_view.ViewPanel attribute)

 	(enaml.stdlib.dialog_buttons.DialogButtonBox attribute)

 	(enaml.stdlib.task_dialog.TaskDialogBody attribute)

 	(enaml.stdlib.task_dialog.TaskDialogCommandArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogContentArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogDetailsArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogFootnoteArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogIconArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogInstructionArea attribute)

 	(enaml.widgets.container.Container attribute)

 	(enaml.widgets.form.Form attribute)

 	(enaml.widgets.group_box.GroupBox attribute)

 	(enaml.widgets.widget.Widget attribute)

 	Field (class in enaml.widgets.field)

 	field (enaml.styling.Setter attribute)

 	field_text() (enaml.widgets.field.Field method)

 	(enaml.widgets.multiline_field.MultilineField method)

 	figure (enaml.widgets.mpl_canvas.MPLCanvas attribute)

 	file_mode (enaml.widgets.file_dialog_ex.FileDialogEx attribute)

 	FileDialog (class in enaml.widgets.file_dialog)

 	FileDialogEx (class in enaml.widgets.file_dialog_ex)

 	filters (enaml.widgets.file_dialog.FileDialog attribute)

 	find() (enaml.core.object.Object method)

 	(enaml.layout.dock_layout.LayoutNode method)

 	find_all() (enaml.core.object.Object method)

 	(enaml.layout.dock_layout.LayoutNode method)

 	finished (enaml.widgets.dialog.Dialog attribute)

 	(enaml.widgets.toolkit_dialog.ToolkitDialog attribute)

 	fixup() (enaml.validator.Validator method)

 	flag_property() (in module enaml.core.object)

 	flat (enaml.widgets.group_box.GroupBox attribute)

 	floatable (enaml.widgets.dock_pane.DockPane attribute)

 	(enaml.widgets.tool_bar.ToolBar attribute)

 	FloatArea (class in enaml.layout.dock_layout)

 	FloatField (class in enaml.stdlib.fields)

 	floating (enaml.layout.dock_layout.AreaLayout attribute)

 	(enaml.layout.dock_layout.ItemLayout attribute)

 	(enaml.widgets.dock_pane.DockPane attribute)

 	(enaml.widgets.tool_bar.ToolBar attribute)

 	FloatItem (class in enaml.layout.dock_layout)

 	
 	FloatTransform (class in enaml.stdlib.slider_transform)

 	FloatValidator (class in enaml.validator)

 	flow_items() (enaml.widgets.flow_area.FlowArea method)

 	flow_widget() (enaml.widgets.flow_item.FlowItem method)

 	FlowArea (class in enaml.widgets.flow_area)

 	FlowItem (class in enaml.widgets.flow_item)

 	focus_gained() (enaml.widgets.widget.Widget method)

 	focus_lost() (enaml.widgets.widget.Widget method)

 	focus_next_child() (enaml.widgets.widget.Widget method)

 	focus_previous_child() (enaml.widgets.widget.Widget method)

 	Font (class in enaml.fonts)

 	font (enaml.applib.live_editor_view.EditorPanel attribute)

 	(enaml.applib.live_editor_view.ModelEditorPanel attribute)

 	(enaml.applib.live_editor_view.TracebackPanel attribute)

 	(enaml.applib.live_editor_view.ViewEditorPanel attribute)

 	(enaml.applib.live_editor_view.ViewPanel attribute)

 	(enaml.stdlib.dialog_buttons.DialogButtonBox attribute)

 	(enaml.stdlib.task_dialog.TaskDialogBody attribute)

 	(enaml.stdlib.task_dialog.TaskDialogCommandArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogContentArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogDetailsArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogFootnoteArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogIconArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogInstructionArea attribute)

 	(enaml.widgets.container.Container attribute)

 	(enaml.widgets.form.Form attribute)

 	(enaml.widgets.group_box.GroupBox attribute)

 	(enaml.widgets.widget.Widget attribute)

 	foreground (enaml.applib.live_editor_view.EditorPanel attribute)

 	(enaml.applib.live_editor_view.ModelEditorPanel attribute)

 	(enaml.applib.live_editor_view.TracebackPanel attribute)

 	(enaml.applib.live_editor_view.ViewEditorPanel attribute)

 	(enaml.applib.live_editor_view.ViewPanel attribute)

 	(enaml.stdlib.dialog_buttons.DialogButtonBox attribute)

 	(enaml.stdlib.task_dialog.TaskDialogBody attribute)

 	(enaml.stdlib.task_dialog.TaskDialogCommandArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogContentArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogDetailsArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogFootnoteArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogIconArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogInstructionArea attribute)

 	(enaml.widgets.container.Container attribute)

 	(enaml.widgets.form.Form attribute)

 	(enaml.widgets.group_box.GroupBox attribute)

 	(enaml.widgets.widget.Widget attribute)

 	Form (class in enaml.widgets.form)

 	format (enaml.image.Image attribute)

 	Frame (class in enaml.widgets.frame)

 	frame_geometry() (enaml.widgets.window.Window method)

G

 	
 	geometry (enaml.layout.dock_layout.AreaLayout attribute)

 	(enaml.layout.dock_layout.ItemLayout attribute)

 	geometry() (enaml.widgets.window.Window method)

 	get_color() (enaml.widgets.color_dialog.ColorDialog static method)

 	get_existing_directory() (enaml.widgets.file_dialog_ex.FileDialogEx static method)

 	get_maximum() (enaml.stdlib.slider_transform.FloatTransform method)

 	(enaml.stdlib.slider_transform.SliderTransform method)

 	get_minimum() (enaml.stdlib.slider_transform.FloatTransform method)

 	(enaml.stdlib.slider_transform.SliderTransform method)

 	get_open_file_name() (enaml.widgets.file_dialog_ex.FileDialogEx static method)

 	get_open_file_names() (enaml.widgets.file_dialog_ex.FileDialogEx static method)

 	get_percentage() (enaml.widgets.progress_bar.ProgressBar method)

 	
 	get_registered_styles() (in module enaml.stdlib.dock_area_styles)

 	get_save_file_name() (enaml.widgets.file_dialog_ex.FileDialogEx static method)

 	get_selected_item() (enaml.widgets.combo_box.ComboBox method)

 	get_text() (enaml.scintilla.scintilla.Scintilla method)

 	get_value() (enaml.stdlib.slider_transform.FloatTransform method)

 	(enaml.stdlib.slider_transform.SliderTransform method)

 	get_var() (enaml.widgets.ipython_console.IPythonConsole method)

 	get_widget() (enaml.widgets.raw_widget.RawWidget method)

 	green (enaml.colors.Color attribute)

 	grid() (in module enaml.layout.layout_helpers)

 	group (enaml.widgets.abstract_button.AbstractButton attribute)

 	group_members (enaml.widgets.button_group.ButtonGroup attribute)

 	GroupBox (class in enaml.widgets.group_box)

H

 	
 	has_focus() (enaml.widgets.widget.Widget method)

 	has_pending_tasks() (enaml.application.Application method)

 	hbox() (in module enaml.layout.layout_helpers)

 	Hidden (enaml.widgets.dock_events.DockItemEvent.Type attribute)

 	hide() (enaml.widgets.widget.Widget method)

 	high_value (enaml.widgets.dual_slider.DualSlider attribute)

 	horizontal() (in module enaml.layout.layout_helpers)

 	horizontal_policy (enaml.widgets.scroll_area.ScrollArea attribute)

 	horizontal_spacing (enaml.widgets.flow_area.FlowArea attribute)

 	HSplitLayout (class in enaml.layout.dock_layout)

 	Html (class in enaml.widgets.html)

 	html (enaml.widgets.web_view.WebView attribute)

 	hug_height (enaml.scintilla.scintilla.Scintilla attribute)

 	(enaml.widgets.constraints_widget.ConstraintsWidget attribute)

 	(enaml.widgets.container.Container attribute)

 	(enaml.widgets.dock_area.DockArea attribute)

 	(enaml.widgets.dual_slider.DualSlider attribute)

 	(enaml.widgets.flow_area.FlowArea attribute)

 	(enaml.widgets.html.Html attribute)

 	(enaml.widgets.image_view.ImageView attribute)

 	(enaml.widgets.ipython_console.IPythonConsole attribute)

 	(enaml.widgets.mdi_area.MdiArea attribute)

 	(enaml.widgets.mpl_canvas.MPLCanvas attribute)

 	(enaml.widgets.multiline_field.MultilineField attribute)

 	(enaml.widgets.notebook.Notebook attribute)

 	(enaml.widgets.scroll_area.ScrollArea attribute)

 	(enaml.widgets.separator.Separator attribute)

 	(enaml.widgets.slider.Slider attribute)

 	(enaml.widgets.splitter.Splitter attribute)

 	(enaml.widgets.stack.Stack attribute)

 	(enaml.widgets.tool_bar.ToolBar attribute)

 	(enaml.widgets.web_view.WebView attribute)

 	
 	hug_width (enaml.scintilla.scintilla.Scintilla attribute)

 	(enaml.widgets.abstract_button.AbstractButton attribute)

 	(enaml.widgets.combo_box.ComboBox attribute)

 	(enaml.widgets.constraints_widget.ConstraintsWidget attribute)

 	(enaml.widgets.container.Container attribute)

 	(enaml.widgets.date_selector.DateSelector attribute)

 	(enaml.widgets.datetime_selector.DatetimeSelector attribute)

 	(enaml.widgets.dock_area.DockArea attribute)

 	(enaml.widgets.dual_slider.DualSlider attribute)

 	(enaml.widgets.field.Field attribute)

 	(enaml.widgets.flow_area.FlowArea attribute)

 	(enaml.widgets.html.Html attribute)

 	(enaml.widgets.image_view.ImageView attribute)

 	(enaml.widgets.ipython_console.IPythonConsole attribute)

 	(enaml.widgets.label.Label attribute)

 	(enaml.widgets.mdi_area.MdiArea attribute)

 	(enaml.widgets.mpl_canvas.MPLCanvas attribute)

 	(enaml.widgets.multiline_field.MultilineField attribute)

 	(enaml.widgets.notebook.Notebook attribute)

 	(enaml.widgets.object_combo.ObjectCombo attribute)

 	(enaml.widgets.progress_bar.ProgressBar attribute)

 	(enaml.widgets.scroll_area.ScrollArea attribute)

 	(enaml.widgets.separator.Separator attribute)

 	(enaml.widgets.slider.Slider attribute)

 	(enaml.widgets.spin_box.SpinBox attribute)

 	(enaml.widgets.splitter.Splitter attribute)

 	(enaml.widgets.stack.Stack attribute)

 	(enaml.widgets.time_selector.TimeSelector attribute)

 	(enaml.widgets.tool_bar.ToolBar attribute)

 	(enaml.widgets.web_view.WebView attribute)

I

 	
 	Icon (class in enaml.icon)

 	icon (enaml.widgets.abstract_button.AbstractButton attribute)

 	(enaml.widgets.action.Action attribute)

 	(enaml.widgets.dock_item.DockItem attribute)

 	(enaml.widgets.mdi_window.MdiWindow attribute)

 	(enaml.widgets.page.Page attribute)

 	(enaml.widgets.window.Window attribute)

 	icon_size (enaml.widgets.abstract_button.AbstractButton attribute)

 	(enaml.widgets.dock_item.DockItem attribute)

 	IconImage (class in enaml.icon)

 	Image (class in enaml.image)

 	image (enaml.icon.IconImage attribute)

 	(enaml.stdlib.message_box.MessageBox attribute)

 	(enaml.widgets.image_view.ImageView attribute)

 	images (enaml.icon.Icon attribute)

 	ImageView (class in enaml.widgets.image_view)

 	Include (class in enaml.core.include)

 	index (enaml.layout.dock_layout.InsertDockBarItem attribute)

 	(enaml.layout.dock_layout.InsertTab attribute)

 	(enaml.layout.dock_layout.TabLayout attribute)

 	(enaml.widgets.combo_box.ComboBox attribute)

 	(enaml.widgets.stack.Stack attribute)

 	indicators (enaml.scintilla.scintilla.Scintilla attribute)

 	information() (in module enaml.stdlib.message_box)

 	initial_ns (enaml.widgets.ipython_console.IPythonConsole attribute)

 	initial_position (enaml.widgets.window.Window attribute)

 	initial_size (enaml.widgets.window.Window attribute)

 	initialize() (enaml.core.declarative.Declarative method)

 	(enaml.core.include.Include method)

 	(enaml.core.pattern.Pattern method)

 	(enaml.stdlib.slider_transform.SliderTransform method)

 	(enaml.widgets.dock_area.DockArea method)

 	(enaml.widgets.toolkit_object.ToolkitObject method)

 	(enaml.widgets.window.Window method)

 	initialized (enaml.applib.live_editor_view.EditorPanel attribute)

 	(enaml.applib.live_editor_view.ModelEditorPanel attribute)

 	(enaml.applib.live_editor_view.TracebackPanel attribute)

 	(enaml.applib.live_editor_view.ViewEditorPanel attribute)

 	(enaml.applib.live_editor_view.ViewPanel attribute)

 	(enaml.core.declarative.Declarative attribute)

 	(enaml.scintilla.scintilla.Scintilla attribute)

 	(enaml.stdlib.dialog_buttons.DialogButtonBox attribute)

 	(enaml.stdlib.fields.FloatField attribute)

 	(enaml.stdlib.fields.IntField attribute)

 	(enaml.stdlib.fields.RegexField attribute)

 	(enaml.stdlib.task_dialog.TaskDialogBody attribute)

 	(enaml.stdlib.task_dialog.TaskDialogCommandArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogContentArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogDetailsArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogFootnoteArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogIconArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogInstructionArea attribute)

 	(enaml.widgets.abstract_button.AbstractButton attribute)

 	(enaml.widgets.bounded_date.BoundedDate attribute)

 	(enaml.widgets.bounded_datetime.BoundedDatetime attribute)

 	(enaml.widgets.bounded_time.BoundedTime attribute)

 	(enaml.widgets.calendar.Calendar attribute)

 	(enaml.widgets.check_box.CheckBox attribute)

 	(enaml.widgets.combo_box.ComboBox attribute)

 	(enaml.widgets.constraints_widget.ConstraintsWidget attribute)

 	(enaml.widgets.container.Container attribute)

 	(enaml.widgets.control.Control attribute)

 	(enaml.widgets.date_selector.DateSelector attribute)

 	(enaml.widgets.datetime_selector.DatetimeSelector attribute)

 	(enaml.widgets.dock_area.DockArea attribute)

 	(enaml.widgets.dual_slider.DualSlider attribute)

 	(enaml.widgets.field.Field attribute)

 	(enaml.widgets.flow_area.FlowArea attribute)

 	(enaml.widgets.form.Form attribute)

 	(enaml.widgets.frame.Frame attribute)

 	(enaml.widgets.group_box.GroupBox attribute)

 	(enaml.widgets.html.Html attribute)

 	(enaml.widgets.image_view.ImageView attribute)

 	(enaml.widgets.ipython_console.IPythonConsole attribute)

 	(enaml.widgets.label.Label attribute)

 	(enaml.widgets.mdi_area.MdiArea attribute)

 	(enaml.widgets.mpl_canvas.MPLCanvas attribute)

 	(enaml.widgets.multiline_field.MultilineField attribute)

 	(enaml.widgets.notebook.Notebook attribute)

 	(enaml.widgets.object_combo.ObjectCombo attribute)

 	(enaml.widgets.progress_bar.ProgressBar attribute)

 	(enaml.widgets.push_button.PushButton attribute)

 	(enaml.widgets.radio_button.RadioButton attribute)

 	(enaml.widgets.raw_widget.RawWidget attribute)

 	(enaml.widgets.scroll_area.ScrollArea attribute)

 	(enaml.widgets.separator.Separator attribute)

 	(enaml.widgets.slider.Slider attribute)

 	(enaml.widgets.spin_box.SpinBox attribute)

 	(enaml.widgets.splitter.Splitter attribute)

 	(enaml.widgets.stack.Stack attribute)

 	(enaml.widgets.time_selector.TimeSelector attribute)

 	(enaml.widgets.tool_bar.ToolBar attribute)

 	(enaml.widgets.web_view.WebView attribute)

 	
 	insert_children() (enaml.core.object.Object method)

 	InsertBorderItem (class in enaml.layout.dock_layout)

 	InsertDockBarItem (class in enaml.layout.dock_layout)

 	InsertItem (class in enaml.layout.dock_layout)

 	InsertTab (class in enaml.layout.dock_layout)

 	instance() (enaml.application.Application static method)

 	interval (enaml.widgets.timer.Timer attribute)

 	IntField (class in enaml.stdlib.fields)

 	IntValidator (class in enaml.validator)

 	IPythonConsole (class in enaml.widgets.ipython_console)

 	is_active() (enaml.widgets.timer.Timer method)

 	is_destroyed (enaml.core.object.Object property)

 	is_initialized (enaml.core.declarative.Declarative property)

 	is_main_thread() (enaml.application.Application method)

 	(in module enaml.application)

 	is_maximized() (enaml.widgets.window.Window method)

 	is_minimized() (enaml.widgets.window.Window method)

 	item (enaml.layout.dock_layout.AreaLayout attribute)

 	(enaml.layout.dock_layout.ExtendItem attribute)

 	(enaml.layout.dock_layout.FloatItem attribute)

 	(enaml.layout.dock_layout.InsertBorderItem attribute)

 	(enaml.layout.dock_layout.InsertDockBarItem attribute)

 	(enaml.layout.dock_layout.InsertItem attribute)

 	(enaml.layout.dock_layout.InsertTab attribute)

 	(enaml.layout.dock_layout.RemoveItem attribute)

 	(enaml.layout.dock_layout.RetractItem attribute)

 	ItemLayout (class in enaml.layout.dock_layout)

 	items (enaml.core.conditional.Conditional attribute)

 	(enaml.core.looper.Looper attribute)

 	(enaml.layout.dock_layout.DockBarLayout attribute)

 	(enaml.layout.dock_layout.DockLayout attribute)

 	(enaml.layout.dock_layout.SplitLayout attribute)

 	(enaml.layout.dock_layout.TabLayout attribute)

 	(enaml.widgets.combo_box.ComboBox attribute)

 	(enaml.widgets.object_combo.ObjectCombo attribute)

 	items() (enaml.widgets.menu.Menu method)

 	(enaml.widgets.tool_bar.ToolBar method)

 	ItemStyle (class in enaml.stdlib.dock_area_styles)

 	iterable (enaml.core.looper.Looper attribute)

L

 	
 	Label (class in enaml.widgets.label)

 	layout (enaml.widgets.dock_area.DockArea attribute)

 	layout_constraints (enaml.stdlib.task_dialog.TaskDialogBody attribute)

 	(enaml.stdlib.task_dialog.TaskDialogIconArea attribute)

 	layout_constraints() (enaml.widgets.constraints_widget.ConstraintsWidget method)

 	(enaml.widgets.container.Container method)

 	(enaml.widgets.form.Form method)

 	(enaml.widgets.image_view.ImageView method)

 	LayoutNode (class in enaml.layout.dock_layout)

 	limit_height (enaml.widgets.constraints_widget.ConstraintsWidget attribute)

 	limit_width (enaml.widgets.constraints_widget.ConstraintsWidget attribute)

 	
 	line_style (enaml.widgets.frame.Border attribute)

 	(enaml.widgets.separator.Separator attribute)

 	line_width (enaml.widgets.frame.Border attribute)

 	(enaml.widgets.separator.Separator attribute)

 	link_activated (enaml.widgets.label.Label attribute)

 	linked (enaml.layout.dock_layout.AreaLayout attribute)

 	(enaml.layout.dock_layout.ItemLayout attribute)

 	live_drag (enaml.widgets.dock_area.DockArea attribute)

 	(enaml.widgets.splitter.Splitter attribute)

 	LiveEditorModel (class in enaml.applib.live_editor_model)

 	Looper (class in enaml.core.looper)

 	low_value (enaml.widgets.dual_slider.DualSlider attribute)

M

 	
 	MainWindow (class in enaml.widgets.main_window)

 	MappedView (class in enaml.stdlib.mapped_view)

 	margins (enaml.widgets.flow_area.FlowArea attribute)

 	markers (enaml.scintilla.scintilla.Scintilla attribute)

 	mask (enaml.widgets.field.Field attribute)

 	match() (enaml.styling.Style method)

 	max_length (enaml.widgets.field.Field attribute)

 	maximize() (enaml.widgets.window.Window method)

 	maximized (enaml.layout.dock_layout.AreaLayout attribute)

 	(enaml.layout.dock_layout.ItemLayout attribute)

 	(enaml.layout.dock_layout.TabLayout attribute)

 	maximum (enaml.stdlib.slider_transform.FloatTransform attribute)

 	(enaml.stdlib.slider_transform.SliderTransform attribute)

 	(enaml.validator.FloatValidator attribute)

 	(enaml.validator.IntValidator attribute)

 	(enaml.widgets.bounded_date.BoundedDate attribute)

 	(enaml.widgets.bounded_datetime.BoundedDatetime attribute)

 	(enaml.widgets.bounded_time.BoundedTime attribute)

 	(enaml.widgets.dual_slider.DualSlider attribute)

 	(enaml.widgets.progress_bar.ProgressBar attribute)

 	(enaml.widgets.slider.Slider attribute)

 	(enaml.widgets.spin_box.SpinBox attribute)

 	maximum_size (enaml.applib.live_editor_view.EditorPanel attribute)

 	(enaml.applib.live_editor_view.ModelEditorPanel attribute)

 	(enaml.applib.live_editor_view.TracebackPanel attribute)

 	(enaml.applib.live_editor_view.ViewEditorPanel attribute)

 	(enaml.applib.live_editor_view.ViewPanel attribute)

 	(enaml.stdlib.dialog_buttons.DialogButtonBox attribute)

 	(enaml.stdlib.task_dialog.TaskDialogBody attribute)

 	(enaml.stdlib.task_dialog.TaskDialogCommandArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogContentArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogDetailsArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogFootnoteArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogIconArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogInstructionArea attribute)

 	(enaml.widgets.container.Container attribute)

 	(enaml.widgets.form.Form attribute)

 	(enaml.widgets.group_box.GroupBox attribute)

 	(enaml.widgets.widget.Widget attribute)

 	mdi_widget() (enaml.widgets.mdi_window.MdiWindow method)

 	mdi_windows() (enaml.widgets.mdi_area.MdiArea method)

 	MdiArea (class in enaml.widgets.mdi_area)

 	MdiWindow (class in enaml.widgets.mdi_window)

 	Menu (class in enaml.widgets.menu)

 	menu() (enaml.widgets.push_button.PushButton method)

 	menu_bar() (enaml.widgets.main_window.MainWindow method)

 	MenuBar (class in enaml.widgets.menu_bar)

 	menus() (enaml.widgets.menu_bar.MenuBar method)

 	message (enaml.validator.Validator attribute)

 	MessageBox (class in enaml.stdlib.message_box)

 	midline (enaml.widgets.form.Form attribute)

 	midline_width (enaml.widgets.frame.Border attribute)

 	(enaml.widgets.separator.Separator attribute)

 	minimize() (enaml.widgets.window.Window method)

 	minimum (enaml.stdlib.slider_transform.FloatTransform attribute)

 	(enaml.stdlib.slider_transform.SliderTransform attribute)

 	(enaml.validator.FloatValidator attribute)

 	(enaml.validator.IntValidator attribute)

 	(enaml.widgets.bounded_date.BoundedDate attribute)

 	(enaml.widgets.bounded_datetime.BoundedDatetime attribute)

 	(enaml.widgets.bounded_time.BoundedTime attribute)

 	(enaml.widgets.dual_slider.DualSlider attribute)

 	(enaml.widgets.progress_bar.ProgressBar attribute)

 	(enaml.widgets.slider.Slider attribute)

 	(enaml.widgets.spin_box.SpinBox attribute)

 	minimum_size (enaml.applib.live_editor_view.EditorPanel attribute)

 	(enaml.applib.live_editor_view.ModelEditorPanel attribute)

 	(enaml.applib.live_editor_view.TracebackPanel attribute)

 	(enaml.applib.live_editor_view.ViewEditorPanel attribute)

 	(enaml.applib.live_editor_view.ViewPanel attribute)

 	(enaml.stdlib.dialog_buttons.DialogButtonBox attribute)

 	(enaml.stdlib.task_dialog.TaskDialogBody attribute)

 	(enaml.stdlib.task_dialog.TaskDialogCommandArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogContentArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogDetailsArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogFootnoteArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogIconArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogInstructionArea attribute)

 	(enaml.widgets.container.Container attribute)

 	(enaml.widgets.form.Form attribute)

 	(enaml.widgets.group_box.GroupBox attribute)

 	(enaml.widgets.widget.Widget attribute)

 	modality (enaml.widgets.dialog.Dialog attribute)

 	(enaml.widgets.window.Window attribute)

 	mode (enaml.icon.IconImage attribute)

 	(enaml.widgets.file_dialog.FileDialog attribute)

 	(enaml.widgets.status_item.StatusItem attribute)

 	model_filename (enaml.applib.live_editor_model.LiveEditorModel attribute)

 	model_item (enaml.applib.live_editor_model.LiveEditorModel attribute)

 	model_text (enaml.applib.live_editor_model.LiveEditorModel attribute)

 	ModelEditorPanel (class in enaml.applib.live_editor_view)

 	
 module

 	enaml

 	enaml.applib

 	enaml.applib.live_editor_model

 	enaml.applib.live_editor_view

 	enaml.application

 	enaml.colors

 	enaml.core

 	enaml.core.conditional

 	enaml.core.declarative

 	enaml.core.include

 	enaml.core.looper

 	enaml.core.object

 	enaml.core.pattern

 	enaml.fonts

 	enaml.icon

 	enaml.image

 	enaml.layout

 	enaml.layout.dock_layout

 	enaml.layout.layout_helpers

 	enaml.nodevisitor

 	enaml.scintilla

 	enaml.scintilla.scintilla

 	enaml.stdlib

 	enaml.stdlib.dialog_buttons

 	enaml.stdlib.dock_area_styles

 	enaml.stdlib.fields

 	enaml.stdlib.mapped_view

 	enaml.stdlib.message_box

 	enaml.stdlib.slider_transform

 	enaml.stdlib.task_dialog

 	enaml.styling

 	enaml.validator

 	enaml.version

 	enaml.widgets

 	enaml.widgets.abstract_button

 	enaml.widgets.action

 	enaml.widgets.action_group

 	enaml.widgets.bounded_date

 	enaml.widgets.bounded_datetime

 	enaml.widgets.bounded_time

 	enaml.widgets.button_group

 	enaml.widgets.calendar

 	enaml.widgets.check_box

 	enaml.widgets.color_dialog

 	enaml.widgets.combo_box

 	enaml.widgets.constraints_widget

 	enaml.widgets.container

 	enaml.widgets.control

 	enaml.widgets.date_selector

 	enaml.widgets.datetime_selector

 	enaml.widgets.dialog

 	enaml.widgets.dock_area

 	enaml.widgets.dock_events

 	enaml.widgets.dock_item

 	enaml.widgets.dock_pane

 	enaml.widgets.dual_slider

 	enaml.widgets.field

 	enaml.widgets.file_dialog

 	enaml.widgets.file_dialog_ex

 	enaml.widgets.flow_area

 	enaml.widgets.flow_item

 	enaml.widgets.form

 	enaml.widgets.frame

 	enaml.widgets.group_box

 	enaml.widgets.html

 	enaml.widgets.image_view

 	enaml.widgets.ipython_console

 	enaml.widgets.label

 	enaml.widgets.main_window

 	enaml.widgets.mdi_area

 	enaml.widgets.mdi_window

 	enaml.widgets.menu

 	enaml.widgets.menu_bar

 	enaml.widgets.mpl_canvas

 	enaml.widgets.multiline_field

 	enaml.widgets.notebook

 	enaml.widgets.object_combo

 	enaml.widgets.page

 	enaml.widgets.popup_view

 	enaml.widgets.progress_bar

 	enaml.widgets.push_button

 	enaml.widgets.radio_button

 	enaml.widgets.raw_widget

 	enaml.widgets.scroll_area

 	enaml.widgets.separator

 	enaml.widgets.slider

 	enaml.widgets.spin_box

 	enaml.widgets.split_item

 	enaml.widgets.splitter

 	enaml.widgets.stack

 	enaml.widgets.stack_item

 	enaml.widgets.status_bar

 	enaml.widgets.status_item

 	enaml.widgets.time_selector

 	enaml.widgets.timer

 	enaml.widgets.tool_bar

 	enaml.widgets.toolkit_dialog

 	enaml.widgets.toolkit_object

 	enaml.widgets.web_view

 	enaml.widgets.widget

 	enaml.widgets.window

 	
 	movable (enaml.widgets.dock_pane.DockPane attribute)

 	(enaml.widgets.tool_bar.ToolBar attribute)

 	MPLCanvas (class in enaml.widgets.mpl_canvas)

 	MultilineField (class in enaml.widgets.multiline_field)

N

 	
 	name (enaml.applib.live_editor_view.EditorPanel attribute)

 	(enaml.applib.live_editor_view.ModelEditorPanel attribute)

 	(enaml.applib.live_editor_view.TracebackPanel attribute)

 	(enaml.applib.live_editor_view.ViewEditorPanel attribute)

 	(enaml.applib.live_editor_view.ViewPanel attribute)

 	(enaml.core.declarative.Declarative attribute)

 	(enaml.core.object.Object attribute)

 	(enaml.layout.dock_layout.ItemLayout attribute)

 	(enaml.scintilla.scintilla.Scintilla attribute)

 	(enaml.stdlib.dialog_buttons.DialogButtonBox attribute)

 	(enaml.stdlib.fields.FloatField attribute)

 	(enaml.stdlib.fields.IntField attribute)

 	(enaml.stdlib.fields.RegexField attribute)

 	(enaml.stdlib.task_dialog.TaskDialogBody attribute)

 	(enaml.stdlib.task_dialog.TaskDialogCommandArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogContentArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogDetailsArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogFootnoteArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogIconArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogInstructionArea attribute)

 	(enaml.widgets.abstract_button.AbstractButton attribute)

 	(enaml.widgets.bounded_date.BoundedDate attribute)

 	(enaml.widgets.bounded_datetime.BoundedDatetime attribute)

 	(enaml.widgets.bounded_time.BoundedTime attribute)

 	(enaml.widgets.calendar.Calendar attribute)

 	(enaml.widgets.check_box.CheckBox attribute)

 	(enaml.widgets.combo_box.ComboBox attribute)

 	(enaml.widgets.constraints_widget.ConstraintsWidget attribute)

 	(enaml.widgets.container.Container attribute)

 	(enaml.widgets.control.Control attribute)

 	(enaml.widgets.date_selector.DateSelector attribute)

 	(enaml.widgets.datetime_selector.DatetimeSelector attribute)

 	(enaml.widgets.dock_area.DockArea attribute)

 	(enaml.widgets.dock_events.DockItemEvent attribute)

 	(enaml.widgets.dual_slider.DualSlider attribute)

 	(enaml.widgets.field.Field attribute)

 	(enaml.widgets.flow_area.FlowArea attribute)

 	(enaml.widgets.form.Form attribute)

 	(enaml.widgets.frame.Frame attribute)

 	(enaml.widgets.group_box.GroupBox attribute)

 	(enaml.widgets.html.Html attribute)

 	(enaml.widgets.image_view.ImageView attribute)

 	(enaml.widgets.ipython_console.IPythonConsole attribute)

 	(enaml.widgets.label.Label attribute)

 	(enaml.widgets.mdi_area.MdiArea attribute)

 	(enaml.widgets.mpl_canvas.MPLCanvas attribute)

 	(enaml.widgets.multiline_field.MultilineField attribute)

 	(enaml.widgets.notebook.Notebook attribute)

 	(enaml.widgets.object_combo.ObjectCombo attribute)

 	(enaml.widgets.progress_bar.ProgressBar attribute)

 	(enaml.widgets.push_button.PushButton attribute)

 	(enaml.widgets.radio_button.RadioButton attribute)

 	(enaml.widgets.raw_widget.RawWidget attribute)

 	(enaml.widgets.scroll_area.ScrollArea attribute)

 	(enaml.widgets.separator.Separator attribute)

 	(enaml.widgets.slider.Slider attribute)

 	(enaml.widgets.spin_box.SpinBox attribute)

 	(enaml.widgets.splitter.Splitter attribute)

 	(enaml.widgets.stack.Stack attribute)

 	(enaml.widgets.time_selector.TimeSelector attribute)

 	(enaml.widgets.tool_bar.ToolBar attribute)

 	(enaml.widgets.web_view.WebView attribute)

 	
 	name_filters (enaml.widgets.file_dialog_ex.FileDialogEx attribute)

 	native_dialog (enaml.widgets.file_dialog.FileDialog attribute)

 	next_focus_child() (enaml.widgets.widget.Widget method)

 	NodeVisitor (class in enaml.nodevisitor)

 	Notebook (class in enaml.widgets.notebook)

 	notify() (enaml.application.ScheduledTask method)

O

 	
 	Object (class in enaml.core.object)

 	object_name (enaml.styling.Style attribute)

 	ObjectCombo (class in enaml.widgets.object_combo)

 	objects (enaml.core.include.Include attribute)

 	offset (enaml.widgets.popup_view.PopupView attribute)

 	open() (enaml.widgets.file_dialog.FileDialog method)

 	(enaml.widgets.toolkit_dialog.ToolkitDialog method)

 	
 	orientation (enaml.layout.dock_layout.SplitLayout attribute)

 	(enaml.widgets.dual_slider.DualSlider attribute)

 	(enaml.widgets.separator.Separator attribute)

 	(enaml.widgets.slider.Slider attribute)

 	(enaml.widgets.splitter.Splitter attribute)

 	(enaml.widgets.tool_bar.ToolBar attribute)

 	ortho_stretch (enaml.widgets.flow_item.FlowItem attribute)

P

 	
 	padding (enaml.widgets.container.Container attribute)

 	Page (class in enaml.widgets.page)

 	page_step (enaml.widgets.slider.Slider attribute)

 	page_widget() (enaml.widgets.page.Page method)

 	pages() (enaml.widgets.notebook.Notebook method)

 	parent (enaml.core.object.Object property)

 	parent_anchor (enaml.widgets.popup_view.PopupView attribute)

 	parent_changed() (enaml.core.object.Object method)

 	(enaml.stdlib.slider_transform.SliderTransform method)

 	(enaml.styling.Stylable method)

 	parse_color() (in module enaml.colors)

 	parse_font() (in module enaml.fonts)

 	path (enaml.widgets.file_dialog.FileDialog attribute)

 	paths (enaml.widgets.file_dialog.FileDialog attribute)

 	Pattern (class in enaml.core.pattern)

 	pattern_items() (enaml.core.conditional.Conditional method)

 	(enaml.core.looper.Looper method)

 	(enaml.core.pattern.Pattern method)

 	pattern_nodes (enaml.core.pattern.Pattern attribute)

 	pending() (enaml.application.ScheduledTask method)

 	percentage (enaml.widgets.progress_bar.ProgressBar attribute)

 	placeholder (enaml.widgets.field.Field attribute)

 	pointsize (enaml.fonts.Font attribute)

 	popup() (enaml.widgets.menu.Menu method)

 	popup_views (enaml.widgets.popup_view.PopupView attribute)

 	PopupView (class in enaml.widgets.popup_view)

 	position (enaml.layout.dock_layout.DockBarLayout attribute)

 	(enaml.layout.dock_layout.InsertBorderItem attribute)

 	(enaml.layout.dock_layout.InsertDockBarItem attribute)

 	(enaml.layout.dock_layout.InsertItem attribute)

 	position() (enaml.widgets.window.Window method)

 	precision (enaml.stdlib.slider_transform.FloatTransform attribute)

 	preferred_size (enaml.widgets.flow_item.FlowItem attribute)

 	(enaml.widgets.split_item.SplitItem attribute)

 	prefix (enaml.widgets.spin_box.SpinBox attribute)

 	preserve_aspect_ratio (enaml.widgets.image_view.ImageView attribute)

 	previous_focus_child() (enaml.widgets.widget.Widget method)

 	ProgressBar (class in enaml.widgets.progress_bar)

 	proxy (enaml.scintilla.scintilla.Scintilla attribute)

 	(enaml.widgets.abstract_button.AbstractButton attribute)

 	(enaml.widgets.action.Action attribute)

 	(enaml.widgets.action_group.ActionGroup attribute)

 	(enaml.widgets.bounded_date.BoundedDate attribute)

 	(enaml.widgets.bounded_datetime.BoundedDatetime attribute)

 	(enaml.widgets.bounded_time.BoundedTime attribute)

 	(enaml.widgets.button_group.ButtonGroup attribute)

 	(enaml.widgets.calendar.Calendar attribute)

 	(enaml.widgets.check_box.CheckBox attribute)

 	(enaml.widgets.color_dialog.ColorDialog attribute)

 	(enaml.widgets.combo_box.ComboBox attribute)

 	(enaml.widgets.constraints_widget.ConstraintsWidget attribute)

 	(enaml.widgets.container.Container attribute)

 	(enaml.widgets.control.Control attribute)

 	(enaml.widgets.date_selector.DateSelector attribute)

 	(enaml.widgets.datetime_selector.DatetimeSelector attribute)

 	(enaml.widgets.dialog.Dialog attribute)

 	(enaml.widgets.dock_area.DockArea attribute)

 	(enaml.widgets.dock_item.DockItem attribute)

 	(enaml.widgets.dock_pane.DockPane attribute)

 	(enaml.widgets.dual_slider.DualSlider attribute)

 	(enaml.widgets.field.Field attribute)

 	(enaml.widgets.file_dialog.FileDialog attribute)

 	(enaml.widgets.file_dialog_ex.FileDialogEx attribute)

 	(enaml.widgets.flow_area.FlowArea attribute)

 	(enaml.widgets.flow_item.FlowItem attribute)

 	(enaml.widgets.frame.Frame attribute)

 	(enaml.widgets.group_box.GroupBox attribute)

 	(enaml.widgets.html.Html attribute)

 	(enaml.widgets.image_view.ImageView attribute)

 	(enaml.widgets.ipython_console.IPythonConsole attribute)

 	(enaml.widgets.label.Label attribute)

 	(enaml.widgets.main_window.MainWindow attribute)

 	(enaml.widgets.mdi_area.MdiArea attribute)

 	(enaml.widgets.menu.Menu attribute)

 	(enaml.widgets.menu_bar.MenuBar attribute)

 	(enaml.widgets.mpl_canvas.MPLCanvas attribute)

 	(enaml.widgets.multiline_field.MultilineField attribute)

 	(enaml.widgets.notebook.Notebook attribute)

 	(enaml.widgets.object_combo.ObjectCombo attribute)

 	(enaml.widgets.page.Page attribute)

 	(enaml.widgets.popup_view.PopupView attribute)

 	(enaml.widgets.progress_bar.ProgressBar attribute)

 	(enaml.widgets.push_button.PushButton attribute)

 	(enaml.widgets.radio_button.RadioButton attribute)

 	(enaml.widgets.raw_widget.RawWidget attribute)

 	(enaml.widgets.scroll_area.ScrollArea attribute)

 	(enaml.widgets.separator.Separator attribute)

 	(enaml.widgets.slider.Slider attribute)

 	(enaml.widgets.spin_box.SpinBox attribute)

 	(enaml.widgets.split_item.SplitItem attribute)

 	(enaml.widgets.splitter.Splitter attribute)

 	(enaml.widgets.stack.Stack attribute)

 	(enaml.widgets.stack_item.StackItem attribute)

 	(enaml.widgets.status_bar.StatusBar attribute)

 	(enaml.widgets.status_item.StatusItem attribute)

 	(enaml.widgets.time_selector.TimeSelector attribute)

 	(enaml.widgets.timer.Timer attribute)

 	(enaml.widgets.tool_bar.ToolBar attribute)

 	(enaml.widgets.toolkit_dialog.ToolkitDialog attribute)

 	(enaml.widgets.toolkit_object.ToolkitObject attribute)

 	(enaml.widgets.web_view.WebView attribute)

 	(enaml.widgets.widget.Widget attribute)

 	(enaml.widgets.window.Window attribute)

 	
 	proxy_is_active (enaml.widgets.toolkit_object.ToolkitObject property)

 	ProxyResolver (class in enaml.application)

 	pseudo_class (enaml.styling.Style attribute)

 	pseudo_element (enaml.styling.Style attribute)

 	PushButton (class in enaml.widgets.push_button)

Q

 	
 	question() (in module enaml.stdlib.message_box)

R

 	
 	RadioButton (class in enaml.widgets.radio_button)

 	raw_size (enaml.image.Image attribute)

 	RawWidget (class in enaml.widgets.raw_widget)

 	read_only (enaml.widgets.field.Field attribute)

 	(enaml.widgets.multiline_field.MultilineField attribute)

 	(enaml.widgets.spin_box.SpinBox attribute)

 	red (enaml.colors.Color attribute)

 	refresh_items() (enaml.core.conditional.Conditional method)

 	(enaml.core.looper.Looper method)

 	(enaml.core.pattern.Pattern method)

 	refresh_model() (enaml.applib.live_editor_model.LiveEditorModel method)

 	refresh_view() (enaml.applib.live_editor_model.LiveEditorModel method)

 	regex (enaml.validator.RegexValidator attribute)

 	RegexField (class in enaml.stdlib.fields)

 	RegexValidator (class in enaml.validator)

 	register_styles() (in module enaml.stdlib.dock_area_styles)

 	reject() (enaml.widgets.dialog.Dialog method)

 	(enaml.widgets.toolkit_dialog.ToolkitDialog method)

 	rejected (enaml.widgets.dialog.Dialog attribute)

 	(enaml.widgets.file_dialog.FileDialog attribute)

 	(enaml.widgets.toolkit_dialog.ToolkitDialog attribute)

 	relink_view() (enaml.applib.live_editor_model.LiveEditorModel method)

 	RemoveItem (class in enaml.layout.dock_layout)

 	
 	request_relayout() (enaml.widgets.constraints_widget.ConstraintsWidget method)

 	resist_height (enaml.widgets.constraints_widget.ConstraintsWidget attribute)

 	(enaml.widgets.container.Container attribute)

 	(enaml.widgets.mdi_area.MdiArea attribute)

 	resist_width (enaml.widgets.constraints_widget.ConstraintsWidget attribute)

 	(enaml.widgets.container.Container attribute)

 	(enaml.widgets.mdi_area.MdiArea attribute)

 	resolve() (enaml.application.ProxyResolver method)

 	resolve_proxy_class() (enaml.application.Application method)

 	resolver (enaml.application.Application attribute)

 	restore() (enaml.widgets.window.Window method)

 	restyle() (enaml.styling.Stylable method)

 	(enaml.widgets.widget.Widget method)

 	result (enaml.widgets.dialog.Dialog attribute)

 	(enaml.widgets.file_dialog.FileDialog attribute)

 	(enaml.widgets.toolkit_dialog.ToolkitDialog attribute)

 	result() (enaml.application.ScheduledTask method)

 	(enaml.nodevisitor.NodeVisitor method)

 	Retracted (enaml.widgets.dock_events.DockItemEvent.Type attribute)

 	RetractItem (class in enaml.layout.dock_layout)

 	root_object() (enaml.core.object.Object method)

 	row_spacing (enaml.widgets.form.Form attribute)

 	RubberBandStyle (class in enaml.stdlib.dock_area_styles)

S

 	
 	save_layout() (enaml.widgets.dock_area.DockArea method)

 	scale_to_fit (enaml.widgets.image_view.ImageView attribute)

 	schedule() (enaml.application.Application method)

 	(in module enaml.application)

 	ScheduledTask (class in enaml.application)

 	Scintilla (class in enaml.scintilla.scintilla)

 	ScintillaDocument (class in enaml.scintilla.scintilla)

 	scroll_widget() (enaml.widgets.scroll_area.ScrollArea method)

 	ScrollArea (class in enaml.widgets.scroll_area)

 	selected (enaml.widgets.object_combo.ObjectCombo attribute)

 	selected_color (enaml.widgets.color_dialog.ColorDialog attribute)

 	selected_filter (enaml.widgets.file_dialog.FileDialog attribute)

 	selected_item (enaml.widgets.combo_box.ComboBox attribute)

 	selected_name_filter (enaml.widgets.file_dialog_ex.FileDialogEx attribute)

 	selected_paths (enaml.widgets.file_dialog_ex.FileDialogEx attribute)

 	selected_tab (enaml.widgets.notebook.Notebook attribute)

 	send_to_back() (enaml.widgets.window.Window method)

 	send_to_front() (enaml.widgets.window.Window method)

 	Separator (class in enaml.widgets.separator)

 	separator (enaml.widgets.action.Action attribute)

 	set_custom_color() (enaml.widgets.color_dialog.ColorDialog static method)

 	set_focus() (enaml.widgets.widget.Widget method)

 	set_geometry() (enaml.widgets.window.Window method)

 	set_parent() (enaml.core.object.Object method)

 	set_position() (enaml.widgets.window.Window method)

 	set_size() (enaml.widgets.window.Window method)

 	set_text() (enaml.scintilla.scintilla.Scintilla method)

 	set_value() (enaml.stdlib.slider_transform.FloatTransform method)

 	(enaml.stdlib.slider_transform.SliderTransform method)

 	Setter (class in enaml.styling)

 	setters() (enaml.styling.Style method)

 	settings (enaml.scintilla.scintilla.Scintilla attribute)

 	setup() (enaml.layout.dock_layout.DockLayoutValidator method)

 	(enaml.nodevisitor.NodeVisitor method)

 	share_layout (enaml.widgets.container.Container attribute)

 	show() (enaml.widgets.popup_view.PopupView method)

 	(enaml.widgets.toolkit_dialog.ToolkitDialog method)

 	(enaml.widgets.widget.Widget method)

 	(enaml.widgets.window.Window method)

 	show_alpha (enaml.widgets.color_dialog.ColorDialog attribute)

 	show_buttons (enaml.widgets.color_dialog.ColorDialog attribute)

 	show_dirs_only (enaml.widgets.file_dialog_ex.FileDialogEx attribute)

 	show_message() (enaml.widgets.status_bar.StatusBar method)

 	Shown (enaml.widgets.dock_events.DockItemEvent.Type attribute)

 	single_shot (enaml.widgets.timer.Timer attribute)

 	single_step (enaml.widgets.slider.Slider attribute)

 	(enaml.widgets.spin_box.SpinBox attribute)

 	size (enaml.image.Image attribute)

 	size() (enaml.widgets.window.Window method)

 	size_grip_enabled (enaml.widgets.status_bar.StatusBar attribute)

 	size_hint_mode (enaml.widgets.notebook.Notebook attribute)

 	(enaml.widgets.stack.Stack attribute)

 	sizes (enaml.layout.dock_layout.SplitLayout attribute)

 	Slider (class in enaml.widgets.slider)

 	SliderTransform (class in enaml.stdlib.slider_transform)

 	source (enaml.widgets.html.Html attribute)

 	special_value_text (enaml.widgets.spin_box.SpinBox attribute)

 	SpinBox (class in enaml.widgets.spin_box)

 	split_items() (enaml.widgets.splitter.Splitter method)

 	split_widget() (enaml.widgets.split_item.SplitItem method)

 	SplitItem (class in enaml.widgets.split_item)

 	SplitLayout (class in enaml.layout.dock_layout)

 	Splitter (class in enaml.widgets.splitter)

 	Stack (class in enaml.widgets.stack)

 	stack_items() (enaml.widgets.stack.Stack method)

 	stack_widget() (enaml.widgets.stack_item.StackItem method)

 	StackItem (class in enaml.widgets.stack_item)

 	start() (enaml.application.Application method)

 	(enaml.widgets.timer.Timer method)

 	state (enaml.icon.IconImage attribute)

 	status_bar() (enaml.widgets.main_window.MainWindow method)

 	status_items() (enaml.widgets.status_bar.StatusBar method)

 	status_tip (enaml.applib.live_editor_view.EditorPanel attribute)

 	(enaml.applib.live_editor_view.ModelEditorPanel attribute)

 	(enaml.applib.live_editor_view.TracebackPanel attribute)

 	(enaml.applib.live_editor_view.ViewEditorPanel attribute)

 	(enaml.applib.live_editor_view.ViewPanel attribute)

 	(enaml.stdlib.dialog_buttons.DialogButtonBox attribute)

 	(enaml.stdlib.task_dialog.TaskDialogBody attribute)

 	(enaml.stdlib.task_dialog.TaskDialogCommandArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogContentArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogDetailsArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogFootnoteArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogIconArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogInstructionArea attribute)

 	(enaml.widgets.action.Action attribute)

 	(enaml.widgets.container.Container attribute)

 	(enaml.widgets.form.Form attribute)

 	(enaml.widgets.group_box.GroupBox attribute)

 	(enaml.widgets.widget.Widget attribute)

 	
 	status_widget() (enaml.widgets.status_item.StatusItem method)

 	StatusBar (class in enaml.widgets.status_bar)

 	StatusItem (class in enaml.widgets.status_item)

 	stop() (enaml.application.Application method)

 	(enaml.widgets.timer.Timer method)

 	stretch (enaml.fonts.Font attribute)

 	(enaml.widgets.dock_item.DockItem attribute)

 	(enaml.widgets.flow_item.FlowItem attribute)

 	(enaml.widgets.split_item.SplitItem attribute)

 	(enaml.widgets.status_item.StatusItem attribute)

 	Stylable (class in enaml.styling)

 	Style (class in enaml.styling)

 	style (enaml.fonts.Font attribute)

 	(enaml.widgets.dock_area.DockArea attribute)

 	(enaml.widgets.frame.Border attribute)

 	style_class (enaml.applib.live_editor_view.EditorPanel attribute)

 	(enaml.applib.live_editor_view.ModelEditorPanel attribute)

 	(enaml.applib.live_editor_view.TracebackPanel attribute)

 	(enaml.applib.live_editor_view.ViewEditorPanel attribute)

 	(enaml.applib.live_editor_view.ViewPanel attribute)

 	(enaml.scintilla.scintilla.Scintilla attribute)

 	(enaml.stdlib.dialog_buttons.DialogButtonBox attribute)

 	(enaml.stdlib.fields.FloatField attribute)

 	(enaml.stdlib.fields.IntField attribute)

 	(enaml.stdlib.fields.RegexField attribute)

 	(enaml.stdlib.task_dialog.TaskDialogBody attribute)

 	(enaml.stdlib.task_dialog.TaskDialogCommandArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogContentArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogDetailsArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogFootnoteArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogIconArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogInstructionArea attribute)

 	(enaml.styling.Stylable attribute)

 	(enaml.styling.Style attribute)

 	(enaml.widgets.abstract_button.AbstractButton attribute)

 	(enaml.widgets.bounded_date.BoundedDate attribute)

 	(enaml.widgets.bounded_datetime.BoundedDatetime attribute)

 	(enaml.widgets.bounded_time.BoundedTime attribute)

 	(enaml.widgets.calendar.Calendar attribute)

 	(enaml.widgets.check_box.CheckBox attribute)

 	(enaml.widgets.combo_box.ComboBox attribute)

 	(enaml.widgets.constraints_widget.ConstraintsWidget attribute)

 	(enaml.widgets.container.Container attribute)

 	(enaml.widgets.control.Control attribute)

 	(enaml.widgets.date_selector.DateSelector attribute)

 	(enaml.widgets.datetime_selector.DatetimeSelector attribute)

 	(enaml.widgets.dock_area.DockArea attribute)

 	(enaml.widgets.dual_slider.DualSlider attribute)

 	(enaml.widgets.field.Field attribute)

 	(enaml.widgets.flow_area.FlowArea attribute)

 	(enaml.widgets.form.Form attribute)

 	(enaml.widgets.frame.Frame attribute)

 	(enaml.widgets.group_box.GroupBox attribute)

 	(enaml.widgets.html.Html attribute)

 	(enaml.widgets.image_view.ImageView attribute)

 	(enaml.widgets.ipython_console.IPythonConsole attribute)

 	(enaml.widgets.label.Label attribute)

 	(enaml.widgets.mdi_area.MdiArea attribute)

 	(enaml.widgets.mpl_canvas.MPLCanvas attribute)

 	(enaml.widgets.multiline_field.MultilineField attribute)

 	(enaml.widgets.notebook.Notebook attribute)

 	(enaml.widgets.object_combo.ObjectCombo attribute)

 	(enaml.widgets.progress_bar.ProgressBar attribute)

 	(enaml.widgets.push_button.PushButton attribute)

 	(enaml.widgets.radio_button.RadioButton attribute)

 	(enaml.widgets.raw_widget.RawWidget attribute)

 	(enaml.widgets.scroll_area.ScrollArea attribute)

 	(enaml.widgets.separator.Separator attribute)

 	(enaml.widgets.slider.Slider attribute)

 	(enaml.widgets.spin_box.SpinBox attribute)

 	(enaml.widgets.splitter.Splitter attribute)

 	(enaml.widgets.stack.Stack attribute)

 	(enaml.widgets.time_selector.TimeSelector attribute)

 	(enaml.widgets.tool_bar.ToolBar attribute)

 	(enaml.widgets.web_view.WebView attribute)

 	style_sheet (enaml.application.Application attribute)

 	style_sheet() (enaml.styling.Stylable method)

 	style_sheets() (enaml.styling.StyleCache class method)

 	StyleCache (class in enaml.styling)

 	styles() (enaml.styling.StyleCache class method)

 	(enaml.styling.StyleSheet method)

 	StyleSheet (class in enaml.styling)

 	submit_triggers (enaml.widgets.field.Field attribute)

 	suffix (enaml.widgets.spin_box.SpinBox attribute)

 	suppress_dock_events() (enaml.widgets.dock_area.DockArea method)

 	sync_text() (enaml.widgets.multiline_field.MultilineField method)

 	sync_time (enaml.widgets.field.Field attribute)

 	syntax (enaml.scintilla.scintilla.Scintilla attribute)

T

 	
 	tab_position (enaml.layout.dock_layout.InsertTab attribute)

 	(enaml.layout.dock_layout.TabLayout attribute)

 	(enaml.widgets.dock_area.DockArea attribute)

 	(enaml.widgets.notebook.Notebook attribute)

 	tab_style (enaml.widgets.notebook.Notebook attribute)

 	TabBarCloseButtonStyle (class in enaml.stdlib.dock_area_styles)

 	TabBarTabStyle (class in enaml.stdlib.dock_area_styles)

 	TabLayout (class in enaml.layout.dock_layout)

 	tabs_closable (enaml.widgets.notebook.Notebook attribute)

 	tabs_movable (enaml.widgets.notebook.Notebook attribute)

 	TabSelected (enaml.widgets.dock_events.DockItemEvent.Type attribute)

 	target (enaml.layout.dock_layout.InsertBorderItem attribute)

 	(enaml.layout.dock_layout.InsertDockBarItem attribute)

 	(enaml.layout.dock_layout.InsertItem attribute)

 	(enaml.layout.dock_layout.InsertTab attribute)

 	TaskDialogBody (class in enaml.stdlib.task_dialog)

 	TaskDialogCommandArea (class in enaml.stdlib.task_dialog)

 	TaskDialogContentArea (class in enaml.stdlib.task_dialog)

 	TaskDialogDetailsArea (class in enaml.stdlib.task_dialog)

 	TaskDialogFootnoteArea (class in enaml.stdlib.task_dialog)

 	TaskDialogIconArea (class in enaml.stdlib.task_dialog)

 	TaskDialogInstructionArea (class in enaml.stdlib.task_dialog)

 	teardown() (enaml.layout.dock_layout.DockLayoutValidator method)

 	(enaml.nodevisitor.NodeVisitor method)

 	text (enaml.stdlib.message_box.MessageBox attribute)

 	(enaml.widgets.abstract_button.AbstractButton attribute)

 	(enaml.widgets.action.Action attribute)

 	(enaml.widgets.field.Field attribute)

 	(enaml.widgets.label.Label attribute)

 	(enaml.widgets.multiline_field.MultilineField attribute)

 	text_align (enaml.widgets.field.Field attribute)

 	text_changed (enaml.scintilla.scintilla.Scintilla attribute)

 	text_visible (enaml.widgets.progress_bar.ProgressBar attribute)

 	theme (enaml.scintilla.scintilla.Scintilla attribute)

 	tick_interval (enaml.widgets.dual_slider.DualSlider attribute)

 	(enaml.widgets.slider.Slider attribute)

 	tick_position (enaml.widgets.dual_slider.DualSlider attribute)

 	(enaml.widgets.slider.Slider attribute)

 	tile_mdi_windows() (enaml.widgets.mdi_area.MdiArea method)

 	time (enaml.widgets.bounded_time.BoundedTime attribute)

 	time_format (enaml.widgets.time_selector.TimeSelector attribute)

 	timed_call() (enaml.application.Application method)

 	(in module enaml.application)

 	timeout (enaml.widgets.popup_view.PopupView attribute)

 	(enaml.widgets.timer.Timer attribute)

 	Timer (class in enaml.widgets.timer)

 	TimeSelector (class in enaml.widgets.time_selector)

 	title (enaml.widgets.dock_item.DockItem attribute)

 	(enaml.widgets.dock_pane.DockPane attribute)

 	(enaml.widgets.file_dialog.FileDialog attribute)

 	(enaml.widgets.group_box.GroupBox attribute)

 	(enaml.widgets.mdi_window.MdiWindow attribute)

 	(enaml.widgets.menu.Menu attribute)

 	(enaml.widgets.page.Page attribute)

 	(enaml.widgets.toolkit_dialog.ToolkitDialog attribute)

 	(enaml.widgets.window.Window attribute)

 	
 	title_align (enaml.widgets.group_box.GroupBox attribute)

 	title_bar_orientation (enaml.widgets.dock_pane.DockPane attribute)

 	title_bar_right_clicked (enaml.widgets.dock_item.DockItem attribute)

 	title_bar_visible (enaml.widgets.dock_item.DockItem attribute)

 	(enaml.widgets.dock_pane.DockPane attribute)

 	title_editable (enaml.widgets.dock_item.DockItem attribute)

 	TitleBarButtonStyle (class in enaml.stdlib.dock_area_styles)

 	TitleBarLabelStyle (class in enaml.stdlib.dock_area_styles)

 	TitleBarStyle (class in enaml.stdlib.dock_area_styles)

 	to_icon (enaml.widgets.object_combo.ObjectCombo attribute)

 	to_string (enaml.widgets.object_combo.ObjectCombo attribute)

 	toggled (enaml.widgets.abstract_button.AbstractButton attribute)

 	(enaml.widgets.action.Action attribute)

 	tool_bars() (enaml.widgets.main_window.MainWindow method)

 	tool_tip (enaml.applib.live_editor_view.EditorPanel attribute)

 	(enaml.applib.live_editor_view.ModelEditorPanel attribute)

 	(enaml.applib.live_editor_view.TracebackPanel attribute)

 	(enaml.applib.live_editor_view.ViewEditorPanel attribute)

 	(enaml.applib.live_editor_view.ViewPanel attribute)

 	(enaml.stdlib.dialog_buttons.DialogButtonBox attribute)

 	(enaml.stdlib.task_dialog.TaskDialogBody attribute)

 	(enaml.stdlib.task_dialog.TaskDialogCommandArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogContentArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogDetailsArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogFootnoteArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogIconArea attribute)

 	(enaml.stdlib.task_dialog.TaskDialogInstructionArea attribute)

 	(enaml.widgets.action.Action attribute)

 	(enaml.widgets.container.Container attribute)

 	(enaml.widgets.form.Form attribute)

 	(enaml.widgets.group_box.GroupBox attribute)

 	(enaml.widgets.widget.Widget attribute)

 	ToolBar (class in enaml.widgets.tool_bar)

 	toolbar_visible (enaml.widgets.mpl_canvas.MPLCanvas attribute)

 	toolkit_setter() (enaml.styling.StyleCache class method)

 	ToolkitDialog (class in enaml.widgets.toolkit_dialog)

 	ToolkitObject (class in enaml.widgets.toolkit_object)

 	traceback (enaml.applib.live_editor_model.LiveEditorModel attribute)

 	TracebackPanel (class in enaml.applib.live_editor_view)

 	tracking (enaml.widgets.slider.Slider attribute)

 	transform_mode (enaml.image.Image attribute)

 	Transition (class in enaml.widgets.stack)

 	transition (enaml.widgets.stack.Stack attribute)

 	translucent_background (enaml.widgets.popup_view.PopupView attribute)

 	traverse() (enaml.core.object.Object method)

 	(enaml.layout.dock_layout.LayoutNode method)

 	traverse_ancestors() (enaml.core.object.Object method)

 	triggered (enaml.widgets.action.Action attribute)

 	type (enaml.widgets.dock_events.DockItemEvent attribute)

 	(enaml.widgets.stack.Transition attribute)

U

 	
 	Undocked (enaml.widgets.dock_events.DockItemEvent.Type attribute)

 	unschedule() (enaml.application.ScheduledTask method)

 	update_layout() (enaml.widgets.dock_area.DockArea method)

 	
 	update_ns() (enaml.widgets.ipython_console.IPythonConsole method)

 	url (enaml.widgets.web_view.WebView attribute)

 	uuid (enaml.scintilla.scintilla.ScintillaDocument attribute)

V

 	
 	validate() (enaml.validator.FloatValidator method)

 	(enaml.validator.IntValidator method)

 	(enaml.validator.RegexValidator method)

 	(enaml.validator.Validator method)

 	Validator (class in enaml.validator)

 	validator (enaml.widgets.field.Field attribute)

 	value (enaml.stdlib.slider_transform.FloatTransform attribute)

 	(enaml.stdlib.slider_transform.SliderTransform attribute)

 	(enaml.styling.Setter attribute)

 	(enaml.widgets.progress_bar.ProgressBar attribute)

 	(enaml.widgets.slider.Slider attribute)

 	(enaml.widgets.spin_box.SpinBox attribute)

 	vbox() (in module enaml.layout.layout_helpers)

 	version_info (in module enaml.version)

 	vertical() (in module enaml.layout.layout_helpers)

 	vertical_align (enaml.widgets.label.Label attribute)

 	vertical_policy (enaml.widgets.scroll_area.ScrollArea attribute)

 	vertical_spacing (enaml.widgets.flow_area.FlowArea attribute)

 	view_filename (enaml.applib.live_editor_model.LiveEditorModel attribute)

 	
 	view_item (enaml.applib.live_editor_model.LiveEditorModel attribute)

 	view_text (enaml.applib.live_editor_model.LiveEditorModel attribute)

 	ViewEditorPanel (class in enaml.applib.live_editor_view)

 	ViewPanel (class in enaml.applib.live_editor_view)

 	visible (enaml.widgets.action.Action attribute)

 	(enaml.widgets.action_group.ActionGroup attribute)

 	(enaml.widgets.constraints_widget.ConstraintsWidget attribute)

 	(enaml.widgets.menu.Menu attribute)

 	(enaml.widgets.popup_view.PopupView attribute)

 	(enaml.widgets.widget.Widget attribute)

 	(enaml.widgets.window.Window attribute)

 	visible_widgets() (enaml.widgets.container.Container method)

 	visit() (enaml.nodevisitor.NodeVisitor method)

 	visit_AreaLayout() (enaml.layout.dock_layout.DockLayoutValidator method)

 	visit_DockBarLayout() (enaml.layout.dock_layout.DockLayoutValidator method)

 	visit_DockLayout() (enaml.layout.dock_layout.DockLayoutValidator method)

 	visit_ItemLayout() (enaml.layout.dock_layout.DockLayoutValidator method)

 	visit_SplitLayout() (enaml.layout.dock_layout.DockLayoutValidator method)

 	visit_TabLayout() (enaml.layout.dock_layout.DockLayoutValidator method)

 	VSplitLayout (class in enaml.layout.dock_layout)

W

 	
 	warn() (enaml.layout.dock_layout.DockLayoutValidator method)

 	warning() (in module enaml.stdlib.message_box)

 	WebView (class in enaml.widgets.web_view)

 	weight (enaml.fonts.Font attribute)

 	when() (enaml.widgets.constraints_widget.ConstraintsWidget method)

 	Widget (class in enaml.widgets.widget)

 	widget_resizable (enaml.widgets.scroll_area.ScrollArea attribute)

 	
 	widgets() (enaml.widgets.container.Container method)

 	Window (class in enaml.widgets.window)

 	window_type (enaml.widgets.popup_view.PopupView attribute)

 	WindowButtonStyle (class in enaml.stdlib.dock_area_styles)

 	windows (enaml.widgets.window.Window attribute)

 	WindowStyle (class in enaml.stdlib.dock_area_styles)

 	wrapping (enaml.widgets.spin_box.SpinBox attribute)

Z

 	
 	zoom (enaml.scintilla.scintilla.Scintilla attribute)

_images/wb_main.png
File Workspace

Sample Plugin App

_images/wb_second.png
Sample Plugin App - Second View
File Preferences Window Workspace Help

First Name |

Last Name |

Address |

_images/tut_john_doe_jr.png

_images/wb_first.png
Sample Plugin App - First View |
File Edit Workspace

Hello World!

_images/wb_third.png
Sample Plugin App - Third View
File Debug Options Tools Workspace

_images/win_hierarchy.png
fem1 Hem2 Item3

Y —

e —

_images/tut_john_doe.png

_images/tut_john_doe_error.png

_images/tut_hello_world.png

_images/tut_hello_world_python.png

_images/ex_menu_bar.png

_images/ex_message_box.png
® © @ Message Box Exa...

About

Critical

Information

Question

Warning

Custom

_images/ex_mapped_view.png
Base B

Name Base

_images/ex_mdi_area.png
Add New MDI Window Hide all Tile subwindows Cascade subwindows :
[BN) Window O :
[

Activate e
e

. [

New window O e
[

e

e

e

[

[

he

e

[

[

e

Y e

€

[

_images/ex_nested_boxes.png
Label A

Label B
Label C Label D Label E
Label F Label G

Button 1 Button 2 Button 3

_images/ex_nested_containers.png
XK) Nested Containers

Hello Enaml!

Add Remove Change Mode Share...

_images/ex_mpl_canvas.png
one Toolbar Visible

3.001

2.751

2.501

2.254

2.001

1.75 A

1.50 A

1.25 A

1.00 A

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

_images/ex_mpl_canvas_size.png
resist_height and resist_width

hug_height and hug_width

limit_height and limit_width

1.00

075

0.50

025

0.00

-0.25

-0.50

-0.75

-1.00

0.0 0.2 0.4 0.6 0.8 10

_images/ex_notebook.png
-

Go to Bar Page

Go to Baz Page

Tabs Closable
Tabs Movable
Document Style Tabs

X Baz Page

_images/ex_notebook_pages.png
o

Show Static Pages = Hide Static Pages ~ Insert Dynamic Page =~ Remove Dynamic Page

Static Page 1

_static/minus.png

_static/plus.png

_images/ex_align_offset.png
Long Name Foo

_images/ex_banner.png
Banner Example

Banner Text

First First Value description...

Second |Second Value

Third Third Value

Fourth |Fourth Value

Toggle Banner Style

Primary Content

_images/ex_advanced.png
'@ ® ® Advanced Templates

Foo Mode!

Clack
Click
First

Ham
Last

Owner

irst

42 z

ast

owner

Spam

34

(<>

Time

42.56

Bar Model

Choices
Name

Trigger

first a

name

Trigger

_images/ex_align.png
Long Name Foo

Bar

_images/ex_basic.png
@ ® ®@ Basic Templates

Hello Templates

Ok Cancel

_images/ex_popup_menu.png
eooe |

Popup Menu

‘Context Menu ‘

_images/ex_popup_view.png
Show Config Popup

Show Window Notification

Show Desktop Notification

Show Mouse Notification

_images/ex_override_function.png
Say Hi

Say Hello

_images/ex_override_layout_constraints.png
@® © @ Custom Constraints

Surname

Click me

_images/abs_hierarchy.png
Window

_images/ex_simple_attribute_alias.png
® © @ Ssimple Attribute A...

_images/cascade_style.png
x
B

_images/ex_simple_widget_alias.png
® © @ simple Widget Alias

Aliased Button

_images/ex_progress_bar.png
® e Progress Bar

Do Some Work 0% (0/100)

_images/ex_scroll_area.png
00 Scroll Area

First name:

Last name:

Address:

City:

State:

Postal Code:

Country:

Phone number:

Email:

Confirm email:

Confirm email:

_images/ex_slider.png
@ Slider Example

Log Value 0.0

_static/file.png

_images/ex_observe_model_signal.png
val

_images/ex_tool_buttons.png
[JOX J Tool Buttons

O -8 &+ =
e
Hello

_images/ex_v_group.png
® ©® @ VGroup

Leading Spacer | |

Trailing Spacer | |

ey 1o 1:

_images/ex_task_dialog.png
@® © @ Task Dialog Example |

Launch Dialog

_images/ex_tool_bar.png
Button Exclusive ‘ToolBar Buttons Checkable ‘ToolBar Buttons

Hello World!

Button Exclusive ToolBar Butions Checkable ToolBar Buttons

_images/ex_vtk_canvas.png
[] [] VTK Canvas

_images/ex_window.png
® © @ Hello World!

_images/ex_vbox.png
Spam

Long Name Foo

Bar

_images/ex_vertical.png
Spam

Long Name Foao

Bar

_images/ex_spin_box.png
@® © @ SpinBox Example \

Select Age O

<>

Age: 0 ‘

_images/ex_splitter.png
-

Last name:

Address:

City:
State:
Postal Code:

Country:

First name:
Last name:

Address:

City:

State:

Postal Code:

Country:

Hello World!

Hello Enaml!

First name:
Last name:

Address:

City:
State:
Postal Code:

Country:

_images/simple_style.png

_images/specificity_style.png

_images/pseudo_element_style.png
Group Box

——

_images/selector_style.png

_images/tut_employee_layout_no_midline.png
] Employee Record for: Sue, Mary (:=|

Personal Detalls:
Frstname: Mary
Lsstrame: sue
Home phone: (555 555-5555

Dateofsith: 1/1/1970

Show Password: []

Employer Detais

Company: Padats Cats

Reportng Manager: John Pan
Alow Editing:

_images/tut_employee_layout.png
5] Employee Record for: Sue, Mary (| =0 P

Personal Detalls:
First name: Mary|
Lastname: e
Home phone: (555) 555-5555
Il pateofsirth: s =
- 0
Password:

showPassword: [

_images/tut_employee_layout_nested_container.png
Employee Record for: Sue, Mary.

Personal Detalls:
Frstname: Mary
Lsstrame: sue

Home phone: (555 555-5555

Dateofsith: 1/1/1970

Show Password: []

Employer Detais

Company: Reporting Manager:
| Padvatscats John Paw

_images/person_view.png
21 PersonView - ©

Frstheme [3om]

Lastame |Doe

_images/pseudo_class_style.png
“| StyleSheet - 5 R
Clone

[Three|

_images/ex_window_children.png
® © @ Hello World!

| Foo |

| Bar |

| Baz |

_images/ex_centered_grid.png
Label A Label B Label C
Label D Label E Label F
Label G

Button 1 Button 2 Button 3 :

_images/ex_chained_attribute_alias.png
'@ © @ Chained Attribute...

Outer Box

Inner Box

_images/ex_button_ring.png
— an

Cev an
A AR
Lhad - AR
Z7 A7
40 4R

| Button RING 49

_images/ex_buttons.png
Push Me

Toggle Me

| Check One
| Check Two
) Radio One

) Radio Two

" Radio One b
" Radio Two b

_images/ex_context_menu.png
foo|

bar

baz

_images/ex_dates.png
LX) Personality Survey

Questions
When do you like to wake up? 11:02 PM -
When's your birthday? 8/4/13 ’

When was the best moment of your life? 8/3/18 11:02PM _

When did you last backup your data?

0 Augus(v 2018 O
Sun Mon Tue Wed Thu Fri Sat
31 29 30 3 1 2 3 4
32 5 6 7 8 9 10 11
33 12 13 14 15 16 17 18
3 19 20 21 22 23 24 25
356 26 27 28 29 30 31 1
36 2 & 4 5 6 7 8

Survey Results

_images/ex_chained_widget_alias.png
'@ © @ Chained Widget Al...

Outer Box

Inner Box

_images/ex_conditional.png
[JOX)
Show Bar Views

Regenerate Models

bar

bar

bar

| baz
| baz
| baz

bar

bar

bar

_images/ex_declare_function.png

_images/ex_dock_area.png
Save Layout =) 5 lem?7 X Kem8 X Item9 X
Restore Layout Guten Tagl
H
Add ltems

Vs 2010

~ |Enable Dock Events

Hello World!

_images/ex_dock_item_alerts.png
XK Dock Item Alerts

Controls 18X Important Data

Information Drag the dock items to
different locations to and then
trigger an alert.

Important

Meltdown

Information 20X Meltdown

just

Everything is NOT
okay!

some

information

nav.xhtml

 Table of Contents

 		
 Welcome to Enaml

_images/ex_dual_slider.png
[BON) Dual Slider Example

Set Minimum: 1 N

_images/ex_factory_func.png
o0 e Factory Helper

Column Count 2

KS)

<

_images/ex_dock_pane.png
0 @ Dock...

Foo

Bar

Baz

Hello World!

_images/ex_drag_and_drop.png
Drag Me 1

Drag Me 2

_images/ex_file_dialog.png
@ File Chooser

File Browse

_images/ex_find_replace.png
[K J Find & Replace ‘

Find Find Next

Replace Replace & Find

_images/ex_field.png
[BeN] The Field widget o

text_align: left

This is some text

_images/ex_fields.png
o

Replace All Random Shuffle Modify In-Place
0o o Pop

1 1 o

_images/ex_flow_area.png
Area Controls

Add new items to see how the flow area works.
You can also tweak the flow parameters

Add Item

Remove Item

Horizontal Spacing " .

Vertical Spacing A

Direction left_to_right

A
v
A
~

Align leading

_images/ex_fluid.png
Hello Enaml!

Add

Remove

Change Mode

Share...

_images/ex_focus_traversal.png
@® © @ Focus Traversal

First Group

Second Group

7

4

_images/ex_gradient_push_button.png
® © @ Gradient Button

_images/ex_grid.png
-

Long Name Foo A somewhat long Green
Label which spans
Bar 2 rows and 1 column Blue
Eggs Red
This spans the entire

bottom row!

_images/ex_form.png
Last Name

Age o N

Odd Number Child

_images/ex_form_spacing.png
@ ® ® Form Spacing

Two Visible

Row Spacing °
Column Spacing 10 <
One

Two

A Long Label

_images/ex_hbox.png
Spam Long Name Foo Bar

_images/ex_hbox_equal_widths.png
Spam Long Name Foo Bar

_images/ex_group_box.png
® e Group Boxes

Personal Details

Last name:

Home phone:

Submit | 4 Show Title [|Flat | left B

_images/ex_h_group.png
® e HGroup

Leading Spacer | |

Trailing Spacer | |
Align Widths

_images/ex_horizontal.png
® e
Spam Long Name Foo Bar

_images/ex_image_view.png
Image A B

_images/ex_hbox_spacing.png
Spam Long Name Foo Bar

_images/ex_live_editor.png
X)) Live Editor Demo

View Editor B Ox LieView

- DemoContainer
View Item DemoContainer Zoom O

Model Editor

from enaml.widgets.api import *
from enaml. layout.api import *

enamldef DemoContainer(Container):
pass

Errors

1
2
3
4
5
6
7
8
9

_images/ex_looper.png
o

Items foo bar baz spam ham

Print Items
Field O: